Skip to main content

Advertisement

Log in

Comparative Study of Automated Algorithms for Brain Arteriovenous Malformation Nidus Extent Identification Using 3DRA

Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

When performing a brain arteriovenous malformation (bAVMs) intervention, computer-assisted analysis of bAVMs can aid clinicians in planning precise therapeutic alternatives. Therefore, we aim to assess currently available methods for bAVMs nidus extent identification over 3DRA. To this end, we establish a unified framework to contrast them over the same dataset, fully automatising the workflows.

Materials and Methods

We retrospectively collected contrast-enhanced 3DRA scans of patients with bAVMs. A segmentation network was used to automatically acquire the brain vessels segmentation for each case. We applied the nidus extent identification algorithms over each of the segmentations, computing overlap measurements against manual nidus delineations.

Results

We evaluated the methods over a private dataset with 22 3DRA scans of individuals with bAVMs. The best-performing alternatives resulted in \(\mathbf{0.82\pm 0.14}\) and \(\mathbf{0.81\pm 0.16}\) dice coefficient values.

Conclusions

The mathematical morphology-based approach showed higher robustness through inter-case variability. The skeleton-based approach leverages the skeleton topomorphology characteristics, while being highly sensitive to anatomical variations and the skeletonisation method employed. Overall, nidus extent identification algorithms are also limited by the quality of the raw volume, as the consequent imprecise vessel segmentation will hinder their results. Performance of the available alternatives remains subpar. This analysis allows for a better understanding of the current limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Borden, N. M. 3D Angiographic Atlas of Neurovascular Anatomy and Pathology. Cambridge: Cambridge University Press, 2006.

    Book  Google Scholar 

  2. Dumont, A. S., J. P. Sheehan, and G. Lanzino. Brain Arteriovenous Malformations and Arteriovenous Fistulas. Stuttgart: Thieme, 2017.

    Book  Google Scholar 

  3. Spetzler, R. F., and N. A. Martin. A proposed grading system for arteriovenous malformations. J. Neurosurg. 65(4):476–483, 1986.

    Article  CAS  PubMed  Google Scholar 

  4. Sicuri, G. M., N. Galante, and R. Stefini. Brain arteriovenous malformations classifications: a surgical point of view. In: Trends in Cerebrovascular Surgery and Interventions. 2021, pp. 101–106.

  5. Mohr, J., A. J. Moskowitz, C. Stapf, A. Hartmann, K. Lord, S. M. Marshall, et al. The ARUBA trial: current status, future hopes. Stroke 41(8):e537–e540, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, X. Q., H. Shirato, H. Aoyama, S. Ushikoshi, T. Nishioka, D. Z. Zhang, et al. Clinical significance of 3D reconstruction of arteriovenous malformation using digital subtraction angiography and its modification with CT information in stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 57(5):1392–1399, 2003.

    Article  PubMed  Google Scholar 

  7. Chen, C. J., P. Norat, D. Ding, G. A. Mendes, P. Tvrdik, M. S. Park, et al. Transvenous embolization of brain arteriovenous malformations: a review of techniques, indications, and outcomes. Neurosurg. Focus 45(1):E13, 2018.

    Article  PubMed  Google Scholar 

  8. Waldeck, S., R. Chapot, C. von Falck, M. F. Froelich, M. Brockmann, and D. Overhoff. First experience in the control of the venous side of the brain AVM. J. Clin. Med. 10(24):5771, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chapot, R., and J. H. Buhk. AVM treatment: how to better understand the AVM with 6D imaging. Online. 2022. https://www.esmint.eu/news/webinar-avm-treatment. Accessed 3 Jan 2023.

  10. Blanc, R., A. Seiler, T. Robert, H. Baharvahdat, M. Lafarge, J. Savatovsky, et al. Multimodal angiographic assessment of cerebral arteriovenous malformations: a pilot study. J. Neurointerv. Surg. 7(11):841–847, 2015.

    Article  PubMed  Google Scholar 

  11. Forkert, N. D., T. Illies, E. Goebell, J. Fiehler, D. Säring, and H. Handels. Computer-aided nidus segmentation and angiographic characterization of arteriovenous malformations. Int. J. Comput. Assist. Radiol. Surg. 8(5):775–786, 2013.

    Article  PubMed  Google Scholar 

  12. Di Ieva, A., and G. Reishofer. Fractal-based analysis of arteriovenous malformations (AVMs). In: The Fractal Geometry of the Brain. New York: Springer, 2016, pp. 279–293.

  13. Clarençon, F., F. Maizeroi-Eugène, D. Bresson, et al. Elaboration of a semi-automated algorithm for brain arteriovenous malformation segmentation: initial results. Eur. Radiol. 25(2):436–443, 2015.

    Article  PubMed  Google Scholar 

  14. Babin, D., A. Pižurica, L. Velicki, et al. Skeletonization method for vessel delineation of arteriovenous malformation. Comput. Biol. Med. 93:93–105, 2018.

    Article  CAS  PubMed  Google Scholar 

  15. Chenoune, Y., O. Tankyevych, F. Li, M. Piotin, R. Blanc, and E. Petit. Three-dimensional segmentation and symbolic representation of cerebral vessels on 3DRA images of arteriovenous malformations. Comput. Biol. Med. 115:103489, 2019.

    Article  CAS  PubMed  Google Scholar 

  16. Colombo, E., T. Fick, G. Esposito, M. Germans, L. Regli, and T. van Doormaal. Segmentation techniques of brain arteriovenous malformations for 3D visualization: a systematic review. Radiol. Med. (Torino) 127(12):1333–1341, 2022.

    Article  PubMed  Google Scholar 

  17. García, C., Y. Fang, J. Liu, A. P. Narata, J. I. Orlando, and I. Larrabide. A deep learning model for brain vessel segmentation in 3DRA with arteriovenous malformations. 18th Int. Symp. Med. Inf. Process. Anal. Vol. 12567. SPIE, 2023, pp. 61–69.

  18. Bidaut, L. M., C. Laurent, M. Piotin, et al. Second-generation three-dimensional reconstruction for rotational three-dimensional angiography. Acad. Radiol. 5(12):836–849, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Z. J., K. R. Hoffmann, Z. Wang, S. Rudin, L. R. Guterman, and H. Meng. Contrast settling in cerebral aneurysm angiography. Phys. Med. Biol. 50(13):3171, 2005.

    Article  PubMed  Google Scholar 

  20. Jou, L. D., A. Mohamed, D. Lee, and M. Mawad. 3D rotational digital subtraction angiography may underestimate intracranial aneurysms: findings from two basilar aneurysms. Am. J. Neuroradiol. 28(9):1690–1692, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taghanaki, S. A., Y. Zheng, S. K. Zhou, B. Georgescu, P. Sharma, D. Xu, et al. Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75:24–33, 2019.

    Article  PubMed  Google Scholar 

  22. Shit, S., J. C. Paetzold, A. Sekuboyina, I. Ezhov, A. Unger, A. Zhylka, et al. clDice—a novel topology-preserving loss function for tubular structure segmentation. Proc. IEEE/CVF CVPR. 2021, pp. 16560–16569.

  23. McCormick, M., X. Liu, J. Jomier, C. Marion, and L. Ibanez. ITK: enabling reproducible research and open science. Front. Neuroinform. 8:13, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krejza, J., M. Arkuszewski, S. E. Kasner, et al. Carotid artery diameter in men and women and the relation to body and neck size. Stroke 37(4):1103–1105, 2006.

    Article  PubMed  Google Scholar 

  25. Silversmith, W. Multi-label anisotropic 3D Euclidean distance transform (MLAEDT-3D). 2022. https://github.com/seung-lab/euclidean-distance-transform-3d. Accessed 3 Jan 2023.

  26. Piccinelli, M., A. Veneziani, D. A. Steinman, A. Remuzzi, and L. Antiga. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging 28(8):1141–1155, 2009.

    Article  PubMed  Google Scholar 

  27. McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Med. 22(3):276–282, 2012.

    Article  Google Scholar 

  28. Manjón, J. V., and P. Coupé. volBrain: an online MRI brain volumetry system. Front. Neuroinform. 10:30, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maupu, C., H. Lebas, and Y. Boulaftali. Imaging modalities for intracranial aneurysm: more than meets the eye. Front. Cardiovasc. Med. 9:793072, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

CG is funded by a CONICET PhD Scholarship. This study was partially funded by PICT 2021-0023 and PICT 2020-0045—FONCYT—ANPCYT (Argentina), PIP 2021-2023 11220200102472CO from CONICET (Argentina), a NVIDIA Hardware Grant, and partially supported by the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT) of the Government of Spain, funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila García.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

This research study was conducted retrospectively and data collection was approved by the clinical review board of the Changhai Hospital (Naval Medical University, Shanghai, P. R. China).

Additional information

Associate Editor Francesco Migliavacca oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, C., Narata, A.P., Liu, J. et al. Comparative Study of Automated Algorithms for Brain Arteriovenous Malformation Nidus Extent Identification Using 3DRA. Cardiovasc Eng Tech 14, 801–809 (2023). https://doi.org/10.1007/s13239-023-00688-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-023-00688-w

Keywords

Navigation