Skip to main content
Log in

An In Vitro Circulatory Loop Model of the Pediatric Right Ventricular Outflow Tract as a Platform for Valve Evaluation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Tetralogy of Fallot and other conditions affecting the right ventricular outflow tract (RVOT) are common in pediatric patients, but there is a lack of quantitative comparison among techniques for repairing or replacing the pulmonary valve. The aim of this study was to develop a robust in vitro system for quantifying flow conditions after various RVOT interventions.

Methods

An infant-sized mock circulatory loop that includes a 3D-printed RVOT anatomical model was developed to evaluate flow conditions after different simulated surgical repairs. Physiologically correct flow and pressure were achieved with custom compliant tubing and a tunable flow restrictor. Pressure gradient, flow regurgitation, and coaptation height were measured for two monocusp leaflet designs after tuning the system with a 12 mm Hancock valved conduit.

Results

Measurements were repeatable across multiple samples of two different monocusp designs, with the wider leaflet in the 50% backwall model consistently exhibiting lower pressure gradient but higher regurgitation compared to the leaflet in the 40% backwall model. Coaptation height was measured via direct visualization with endoscopic cameras, revealing a shorter area of contact for the wider leaflet (3.3-4.0 mm) compared to the narrower one (4.3 mm).

Conclusion

The 3D-printed RVOT anatomical model and in vitro pulmonary circulatory loop developed in this work provide a platform for planning and evaluating surgical interventions in the pediatric population. Measurements of regurgitation, pressure gradient, and coaptation provide a quantitative basis for comparison among different valve designs and positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RVOT:

Right-ventricular outflow tract

ToF:

Tetralogy of Fallot

MPA:

Main pulmonary artery

RV:

Right ventricle

e-PTFE:

Expanded polytetrafluoroethylene

STJ:

Sinotubular junction

BW:

Backwall (corresponding to native MPA tissue in transannular patch repair)

TPU:

Thermoplastic polyurethane

MCL:

Mock circulatory loop

NP:

Normal physiology (see Table 2)

HCO:

High cardiac output (see Table 2)

HPVR:

High pulmonary vascular resistance (see Table 2)

fR :

Regurgitant fraction

fC :

Closing volume fraction

References

  1. D. van der Linde et al, “Birth Prevalence of Congenital Heart Disease Worldwide,” J. Am. Coll. Cardiol, vol. 58, no. 21, pp. 2241–2247, Nov. 2011, doi: https://doi.org/10.1016/j.jacc.2011.08.025.

    Article  PubMed  Google Scholar 

  2. J. L. R. Romeo et al, “Outcome after surgical repair of tetralogy of Fallot: A systematic review and meta-analysis,” J. Thorac. Cardiovasc. Surg, vol. 159, no. 1, pp. 220–236.e8, Jan. 2020, doi: https://doi.org/10.1016/j.jtcvs.2019.08.127.

    Article  Google Scholar 

  3. L. Sasson et al, “Right ventricular outflow tract strategies for repair of tetralogy of Fallot: effect of monocusp valve reconstruction,” Eur. J. Cardiothorac. Surg, vol. 43, no. 4, pp. 743–751, Apr. 2013, doi: https://doi.org/10.1093/ejcts/ezs479.

  4. Z. Lyu, M. Jin, and Y. Yang, “Value of pulmonary annulus index in predicting transannular patch in tetralogy of Fallot repair,” J. Card. Surg, vol. 36, no. 7, pp. 2197–2203, Jul. 2021, doi: https://doi.org/10.1111/jocs.15500.

  5. H. F. Al Habib et al, “Contemporary Patterns of Management of Tetralogy of Fallot: Data From The Society of Thoracic Surgeons Database,” Ann. Thorac. Surg, vol. 90, no. 3, pp. 813–820, Sep. 2010, doi: https://doi.org/10.1016/j.athoracsur.2010.03.110.

  6. N. M. Singh, R. S. Loomba, T. M. Gudausky, and M. E. Mitchell, “Monocusp valve placement in children with tetralogy of Fallot undergoing repair with transannular patch: A functioning pulmonary valve does not improve immediate postsurgical outcomes,” Congenit. Heart Dis, vol. 13, no. 6, pp. 935–943, 2018, doi: https://doi.org/10.1111/chd.12670.

    Article  Google Scholar 

  7. M. W. Turrentine, R. P. McCarthy, P. Vijay, K. W. McConnell, and J. W. Brown, “PTFE monocusp valve reconstruction of the right ventricular outflow tract,” Ann. Thorac. Surg, vol. 73, no. 3, pp. 871–880, 2002, doi: https://doi.org/10.1016/S0003-4975(01)03441-5.

    Article  PubMed  Google Scholar 

  8. E. H. N. Sayyed, S. S. Rana, K. M. Anand, A. Eram, and S. Harkant, “Monocusp pulmonary valve reconstruction in childhood and adult TOF repairs: does a single cusped valve work?,” Indian J. Thorac. Cardiovasc. Surg, vol. 32, no. 4, pp. 229–234, 2016, doi: https://doi.org/10.1007/s12055-016-0457-y.

    Article  Google Scholar 

  9. D. S. Nath et al, “Pulmonary Homograft Monocusp Reconstruction of the Right Ventricular Outflow Tract: Outcomes to the Intermediate Term,” Ann. Thorac. Surg, vol. 90, no. 1, pp. 42–49, Jul. 2010, doi: https://doi.org/10.1016/j.athoracsur.2010.03.045.

  10. S. R. Gundry, “Pericardial and Synthetic Monocusp Valves: Indication and Results,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu, vol. 2, no. 1, pp. 77–82, 1999, doi: https://doi.org/10.1016/S1092-9126(99)70007-4.

  11. S. Pande, S. K. Agarwal, G. Majumdar, B. Chandra, P. Tewari, and S. Kumar, “Pericardial Monocusp for Pulmonary Valve Reconstruction: A New Technique,” Asian Cardiovasc. Thorac. Ann, vol. 18, no. 3, pp. 279–284, Jun. 2010, doi: https://doi.org/10.1177/0218492310369185.

  12. J. F. M. Bechtel, P. E. Lange, and H. H. Sievers, “Optimal size of a monocusp patch for reconstruction of a hypoplastic pulmonary root: An experimental study in pigs,” Ann. Thorac. Surg, vol. 79, no. 6, pp. 2103–2108, 2005, doi: https://doi.org/10.1016/j.athoracsur.2004.11.040.

    Article  PubMed  Google Scholar 

  13. H.-H. Sievers et al, “Superior function of a bicuspid over a monocuspid patch for reconstruction of a hypoplastic pulmonary root in pigs,” J. Thorac. Cardiovasc. Surg, vol. 105, no. 4, pp. 580–590, Apr. 1993, doi: https://doi.org/10.1016/S0022-5223(19)34183-2.

  14. S. Mosbahi et al, “Computational fluid dynamics of the right ventricular outflow tract and of the pulmonary artery: a bench model of flow dynamics,” Interact. Cardiovasc. Thorac. Surg, vol. 19, no. 4, pp. 611–616, Oct. 2014, doi: https://doi.org/10.1093/icvts/ivu202.

    Article  PubMed  Google Scholar 

  15. L. Louvelle, M. Doyle, G. Van Arsdell, and C. Amon, “The Effect of Geometric and Hemodynamic Parameters on Blood Flow Efficiency in Repaired Tetralogy of Fallot Patients,” Ann. Biomed. Eng, vol. 49, no. 9, pp. 2297–2310, 2021, doi: https://doi.org/10.1007/s10439-021-02771-6.

    Article  PubMed  Google Scholar 

  16. L. A. Vricella, S. R. Gundry, H. Izutani, M. A. Kuhn, N. Mulla, and L. L. Bailey, “Fate of polytetrafluoroethylene monocusp pulmonary valves in animal model,” Asian Cardiovasc. Thorac. Ann, vol. 11, no. 4, pp. 280–284, 2003, doi: https://doi.org/10.1177/021849230301100402.

    Article  PubMed  Google Scholar 

  17. D. Timms, M. Hayne, K. McNeil, and A. Galbraith, “A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices,” Artif. Organs, vol. 29, no. 7, pp. 564–572, 2005, doi: https://doi.org/10.1111/j.1525-1594.2005.29094.x.

    Article  Google Scholar 

  18. E. Cuenca-Navalon, T. Finocchiaro, M. Laumen, A. Fritschi, T. Schmitz-Rode, and U. Steinseifer, “Design and evaluation of a hybrid mock circulatory loop for total artificial heart testing,” Int. J. Artif. Organs, vol. 37, no. 1, pp. 71–80, 2014, doi: https://doi.org/10.5301/ijao.5000301.

    Article  PubMed  Google Scholar 

  19. D. V. Telyshev, A. A. Pugovkin, and S. V. Selishchev, “A Mock Circulatory System for Testing Pediatric Rotary Blood Pumps,” Biomed. Eng, vol. 51, no. 2, pp. 83–87, 2017, doi: https://doi.org/10.1007/s10527-017-9689-4.

    Article  Google Scholar 

  20. I. Mueller et al, “Design of a right ventricular mock circulation loop as a test bench for right ventricular assist devices,” Biomed. Tech, vol. 62, no. 2, pp. 131–137, 2017, doi: https://doi.org/10.1515/bmt-2016-0104.

    Article  CAS  Google Scholar 

  21. S. Shehab et al, “Valvular Regurgitation in a Biventricular Mock Circulatory Loop,” ASAIO J, vol. 65, no. 6, pp. 551–557, 2019, doi: https://doi.org/10.1097/MAT.0000000000000852.

    Article  PubMed  Google Scholar 

  22. S. D. Gregory et al, “An advanced mock circulation loop for in vitro cardiovascular device evaluation,” Artif. Organs, vol. 44, no. 6, pp. E238–E250, 2020, doi: https://doi.org/10.1111/aor.13636.

    Article  PubMed  Google Scholar 

  23. N. K. Schiavone, C. J. Elkins, D. B. McElhinney, J. K. Eaton, and A. L. Marsden, “In Vitro Assessment of Right Ventricular Outflow Tract Anatomy and Valve Orientation Effects on Bioprosthetic Pulmonary Valve Hemodynamics,” Cardiovasc. Eng. Technol, vol. 12, no. 2, pp. 215–231, 2021, doi: https://doi.org/10.1007/s13239-020-00507-6.

    Article  PubMed  Google Scholar 

  24. M. Amabili, P. Balasubramanian, G. Ferrari, G. Franchini, F. Giovanniello, and E. Tubaldi, “Identification of viscoelastic properties of Dacron aortic grafts subjected to physiological pulsatile flow,” J. Mech. Behav. Biomed. Mater, vol. 110, no. April, p. 103804, 2020, doi: https://doi.org/10.1016/j.jmbbm.2020.103804.

    Article  CAS  PubMed  Google Scholar 

  25. A. P. Yoganathan et al, “A new paradigm for obtaining marketing approval for pediatric-sized prosthetic heart valves,” J. Thorac. Cardiovasc. Surg, vol. 146, no. 4, pp. 879–886, 2013, doi: https://doi.org/10.1016/j.jtcvs.2013.04.016.

    Article  PubMed  Google Scholar 

  26. R. M. Bojar, “Cardiovascular Management,” in Manual of Perioperative Care in Adult Cardiac Surgery, 5th ed., Wiley-Blackwell, 2011, pp. 439–580.

  27. J. Schindelin et al, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods, vol. 9, no. 7, pp. 676–682, 2012, doi: https://doi.org/10.1038/nmeth.2019.

    Article  CAS  PubMed  Google Scholar 

  28. L. Mercer-Rosa, W. Yang, S. Kutty, J. Rychik, M. Fogel, and E. Goldmuntz, “Quantifying Pulmonary Regurgitation and Right Ventricular Function in Surgically Repaired Tetralogy of Fallot: A Comparative Analysis of Echocardiography and Magnetic Resonance Imaging,” Circ. Cardiovasc. Imaging, vol. 5, no. 5, pp. 637–643, Sep. 2012, doi: https://doi.org/10.1161/CIRCIMAGING.112.972588.

  29. M. DiLorenzo, W.-T. Hwang, E. Goldmuntz, B. Ky, and L. Mercer-Rosa, “Diastolic dysfunction in tetralogy of Fallot: Comparison of echocardiography with catheterization,” Echocardiography, vol. 35, no. 10, pp. 1641–1648, Oct. 2018, doi: https://doi.org/10.1111/echo.14113.

  30. D. J. Barron, “The Norwood Procedure: In favor of the RV-PA Conduit,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu, vol. 16, no. 1, pp. 52–58, Jan. 2013, doi: https://doi.org/10.1053/j.pcsu.2013.01.002.

    Article  PubMed  Google Scholar 

  31. E. M. Rumball et al, “The RV–PA conduit stimulates better growth of the pulmonary arteries in hypoplastic left heart syndrome*,” Eur. J. Cardiothorac. Surg, vol. 27, no. 5, pp. 801–806, May 2005, doi: https://doi.org/10.1016/j.ejcts.2005.01.061.

    Article  PubMed  Google Scholar 

  32. M. S. Cabrera, C. W. J. Oomens, C. V. C. Bouten, A. J. J. C. Bogers, S. P. Hoerstrup, and F. P. T. Baaijens, “Mechanical analysis of ovine and pediatric pulmonary artery for heart valve stent design,” J. Biomech, vol. 46, no. 12, pp. 2075–2081, 2013, doi: https://doi.org/10.1016/j.jbiomech.2013.04.020.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by internal funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannen B. Kizilski.

Ethics declarations

Conflict of Interest

S.B. Kizilski, X. Zhang, N.E. Kneier, M.D. Chaillo Lizarraga, N.E. Schulz, P.E. Hammer, and D.M. Hoganson declare that they have no conflicts of interest.

Additional information

Communicated by Igor Efimov.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizilski, S.B., Zhang, X., Kneier, N.E. et al. An In Vitro Circulatory Loop Model of the Pediatric Right Ventricular Outflow Tract as a Platform for Valve Evaluation. Cardiovasc Eng Tech 14, 217–229 (2023). https://doi.org/10.1007/s13239-022-00648-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00648-w

Keywords

Navigation