Skip to main content

Advertisement

Log in

The Role of Immersion for Improving Extended Reality Analysis of Personalized Flow Simulations

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Computational models of flow in patient-derived arterial geometries have become a key paradigm of biomedical research. These fluid models are often challenging to visualize due to high spatial heterogeneity and visual complexity. Virtual immersive environments can offer advantageous visualization of spatially heterogeneous and complex systems. However, as different VR devices offer varying levels of immersion, there remains a crucial lack of understanding regarding what level of immersion is best suited for interactions with patient-specific flow models.

Methods

We conducted a quantitative user evaluation with multiple VR devices testing an important use of hemodynamic simulations—analysis of surface parameters within complex patient-specific geometries. This task was compared for the semi-immersive zSpace 3D monitor and the fully immersive HTC Vive system.

Results

The semi-immersive device was more accurate than the fully immersive device. The two devices showed similar results for task duration and performance (accuracy/duration). The accuracy of the semi-immersive device was also higher for arterial geometries of greater complexity and branching.

Conclusion

This assessment demonstrates that the level of immersion plays a significant role in the accuracy of assessing arterial flow models. We found that the semi-immersive VR device was a generally optimal choice for arterial visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Arora, R., R. H. Kazi, F. Anderson, T. Grossman, K. Singh, and G. W. Fitzmaurice. Experimental evaluation of sketching on surfaces in VR. In: CHI, 2017, pp. 5643–5654. https://doi.org/10.1145/3025453.3025474.

  2. Arzani, Amirhossein, and Shawn C. Shadden. Characterizations and correlations of wall shear stress in aneurysmal flow. J. Biomech. Eng. 138(1):014503, 2016.

    Article  Google Scholar 

  3. Ayachit, U. The Paraview Guide: A Parallel Visualization Application. Clifton Park, NY: Kitware Inc., 2015.

    Google Scholar 

  4. Bach, B., R. Sicat, J. Beyer, M. Cordeil, and H. Pfister. The hologram in my hand: how effective is interactive exploration of 3D visualizations in immersive tangible augmented reality? IEEE Trans. Visual. Comput. Graph. 24(1):457–467, 2018. https://doi.org/10.1109/TVCG.2017.2745941.

    Article  Google Scholar 

  5. Borkin, M. A., K. Z. Gajos, A. Peters, D. Mitsouras, S. Melchionna, F. J. Rybicki, C. L. Feldman, and H. Pfister. Evaluation of artery visualizations for heart disease diagnosis. IEEE Trans. Visual. Comput. Graph. 17(12):2479–2488, 2011. https://doi.org/10.1109/TVCG.2011.192.

    Article  Google Scholar 

  6. Bowman, D. A., and R. P. McMahan. Virtual reality: how much immersion is enough? Computer. 40(7):36–43, 2007. https://doi.org/10.1109/MC.2007.257.

    Article  Google Scholar 

  7. Burdea, G. C., and P. Coiffet. Virtual Reality Technology. New York: Wiley, 2003.

    Book  Google Scholar 

  8. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25):2379–2393, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Coburn, J. Q., I. Freeman, and J. L. Salmon. A review of the capabilities of current low-cost virtual reality technology and its potential to enhance the design process. J. Comput. Inf. Sci. Eng. 17(3):031013, 2017. https://doi.org/10.1115/1.4036921.

    Article  Google Scholar 

  10. Colgan, A. How does the Leap Motion controller work? Leap Motion Blog, 9, 2014.

  11. Dabagh, M., P. Nair, J. Gounley, D. Frakes, L. F. Gonzalez, and A. Randles. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Neurosurg. Focus. 47(1):E13, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Desselle, M. R., R. A. Brown, A. R. James, M. J. Midwinter, S. K. Powell, and M. A. Woodruff. Augmented and virtual reality in surgery. Comput. Sci. Eng. 22(3):18–26, 2020.

    Article  Google Scholar 

  13. Dragicevic, P. Fair statistical communication in HCI. In: Modern Statistical Methods for HCI. Springer, New York, 2016, pp. 291–330. https://doi.org/10.1007/978-3-319-26633-6_13.

  14. Dyverfeldt, P., M. Bissell, A. J. Barker, A. F. Bolger, C.-J. Carlhäll, T. Ebbers, C. J. Francios, A. Frydrychowicz, J. Geiger, D. Giese, et al. 4d flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Mag. Reson. 17(1):1–19, 2015.

    Google Scholar 

  15. Gosling, R. C., P. D. Morris, D. A. Silva Soto, P. V. Lawford, D. R. Hose, and J. P. Gunn. Virtual Coronary Intervention: A Treatment Planning Tool Based Upon the Angiogram. JACC Cardiovascular Imaging. 12:865–872, 2019. https://doi.org/10.1016/j.jcmg.2018.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hadjiloizou, N., J. E. Davies, I. S. Malik, J. Aguado-Sierra, K. Willson, R. A. Foale, K. H. Parker, A. D. Hughes, D. P. Francis, and J. Mayet. Differences in cardiac microcirculatory wave patterns between the proximal left mainstem and proximal right coronary artery. Am. J. Physiol.-Heart Circ. Physiol. 295(3):H1198–H1205, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holland, M. I., S. R. Pop, and N. W. John. VR Cardiovascular blood simulation as decision support for the future cyber hospital. In: 2017 International Conference on Cyberworlds (CW), IEEE, 2017, pp. 233–236. https://doi.org/10.1109/CW.2017.49.

  18. Hombeck, J. N., N. Lichtenberg, and K. Lawonn. Evaluation of spatial perception in virtual reality within a medical context. In: Bildverarbeitung für die Medizin 2019, edited by H. Handels, T. Deserno, A. Maier, K. Maier-Hein, C. Palm, and T. Tolxdorff. Wiesbaden: Springer, 2019, pp. 283–288.

    Chapter  Google Scholar 

  19. Jerald, J. The VR Book: Human-Centered Design for Virtual Reality. San Rafael, CA: Morgan & Claypool, 2015.

    Book  Google Scholar 

  20. Johnston, A. P. R., J. Rae, N. Ariotti, B. Bailey, A. Lilja, R. Webb, C. Ferguson, S. Maher, T. P. Davis, R. I. Webb, et al. Journey to the centre of the cell: Virtual reality immersion into scientific data. Traffic. 19(2):105–110, 2018. https://doi.org/10.1111/tra.12538.

    Article  CAS  PubMed  Google Scholar 

  21. Lledó, L. D., J. A. Díez, A. Bertomeu-Motos, S. Ezquerro, F. J. Badesa, J. M. Sabater-Navarro, and N. García-Aracil. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients. Front. Aging Neurosci. 8:205, 2016. https://doi.org/10.3389/fnagi.2016.00205.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McMahan, R. P., D. A. Bowman, D. J. Zielinski, and R. B. Brady. Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans. Visual. Comput. Graph. 18(4):626–633, 2012. https://doi.org/10.1109/TVCG.2012.43.

    Article  Google Scholar 

  23. Moran, J., G. Briscoe, and S. Peglow. Current technology in advancing medical education: perspectives for learning and providing care. Acad. Psychiatry. 42(6):796–799, 2018.

    Article  PubMed  Google Scholar 

  24. Morris, P. D., A. Narracott, H. Von Tengg-Kobligk, D. A. Silva Soto, S. Hsiao, A. Lungu, P. Evans, N. W. Bressloff, P. V. Lawford, D. R. Hose, and J. P. Gunn. Computational fluid dynamics modelling in cardiovascular medicine. Heart. 102(1):18–28, 2016. https://doi.org/10.1136/heartjnl-2015-308044.

    Article  PubMed  Google Scholar 

  25. Pekkan, K., B. Whited, K. Kanter, S. Sharma, D. Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, A. P. Yoganathan, D. de Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. P. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med. Biol. Eng. Comput. 46(11):1139–1152, 2008. https://doi.org/10.1007/s11517-008-0377-0.

    Article  PubMed  Google Scholar 

  26. Qi, W., R. M. Taylor II, C. G. Healey, and J.-B. Martens. A comparison of immersive HMD, fish tank VR and fish tank with haptics displays for volume visualization. In: Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, ACM, 2006, pp. 51–58. https://doi.org/10.1145/1140491.1140502.

  27. Quam, D. J., T. J. Gundert, L. Ellwein, C. E. Larkee, P. Hayden, R. Q. Migrino, H. Otake, and J. F. LaDisa Jr. Immersive visualization for enhanced computational fluid dynamics analysis. J. Biomech. Eng. 137(3):031004, 2015.

    Article  Google Scholar 

  28. Randles, A., D. H. Frakes, and J. A. Leopold. Computational fluid dynamics and additive manufacturing to diagnose and treat cardiovascular disease. Trends Biotechnol. 35(11):1049–1061, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Randles, A. P., V. Kale, J. Hammond, W. Gropp, and E. Kaxiras. Performance analysis of the lattice Boltzmann model beyond Navier-Stokes. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, IEEE, 2013, pp. 1063–1074. ISBN 978-1-4673-6066-1. https://doi.org/10.1109/IPDPS.2013.109.

  30. Richards, D., and M. Taylor. A comparison of learning gains when using a 2D simulation tool versus a 3D virtual world: an experiment to find the right representation involving the marginal value theorem. Comput. Educ. 86:157–171, 2015. https://doi.org/10.1016/J.COMPEDU.2015.03.009.

    Article  Google Scholar 

  31. Shi, H., J. Ames, and A. Randles. Harvis: an interactive virtual reality tool for hemodynamic modification and simulation. J. Comput. Sci. 43:101091, 2020. https://doi.org/10.1016/j.jocs.2020.101091.

    Article  Google Scholar 

  32. Sua, S., A. Chaudhary, P. O'Leary, B. Geveci, W. Sherman, H. Nieto, and L. Francisco-Revilla. Virtual reality enabled scientific visualization workflow. In: 2015 IEEE 1st Workshop on Everyday Virtual Reality (WEVR). IEEE, 2015, pp. 29–32

  33. Taylor, C. A., T. A. Fonte, and J. K. Min. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61(22):2233–2241, 2013. https://doi.org/10.1016/j.jacc.2012.11.083.

    Article  PubMed  Google Scholar 

  34. Vardhan, M., J. Gounley, S. J. Chen, E. C. Chi, A. M. Kahn, J. A. Leopold, and A. Randles. Non-invasive characterization of complex coronary lesions. Sci. Rep. 11(1):1–15, 2021.

    Article  Google Scholar 

  35. Vardhan, M., J. Gounley, S. J. Chen, A. M. Kahn, J. A. Leopold, and A. Randles. The importance of side branches in modeling 3D hemodynamics from angiograms for patients with coronary artery disease. Sci. Rep. 9(1):1–10, 2019.

    Article  CAS  Google Scholar 

  36. Vardhan, M., H. Shi, J. Gounley, S. J. Chen, A. Kahn, J. Leopold, and A. Randles. Investigating the role of VR in a simulation-based medical planning system for coronary interventions. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2019a, pp. 366–374

  37. Xiang, J., L. Antiga, N. Varble, K. V. Snyder, E. I. Levy, A. H. Siddiqui, and H. Meng. A view: an image-based clinical computational tool for intracranial aneurysm flow visualization and clinical management. Ann Biomed Eng. 44(4):1085–1096, 2016. https://doi.org/10.1007/s10439-015-1363-y.

    Article  PubMed  Google Scholar 

  38. Zhang, J.-M., L. Zhong, B. Su, M. Wan, J. S. Yap, J. P. L. Tham, L. P. Chua, D. N. Ghista, and R. S. Tan. Perspective on CFD studies of coronary artery disease lesions and hemodynamics: a review. Int. J. Numer. Methods Biomed. Eng. 30(6):659–680, 2014.

    Article  Google Scholar 

  39. Zhong, L., J.-M. Zhang, B. Su, R. S. Tan, J. C. Allen, and G. S. Kassab. Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front. Physiol. 9:742, 2018. https://doi.org/10.3389/fphys.2018.00742.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interests or competing interests to declare.

Funding

This work was supported by the NSF under grant 1943036 (A.R, H.S) and the American Heart Association Predoctoral Fellowship 20PRE35211158 (M.V.). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computing support for this work came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Randles.

Additional information

Associate Editor Zhenglun Alan Wei oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Vardhan, M. & Randles, A. The Role of Immersion for Improving Extended Reality Analysis of Personalized Flow Simulations. Cardiovasc Eng Tech 14, 194–203 (2023). https://doi.org/10.1007/s13239-022-00646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00646-y

Keywords

Navigation