Skip to main content
Log in

Surgical Ablation of Cardiac Tissue with Nanosecond Pulsed Electric Fields in Swine

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Background

Myocardial tissue can be ablated by the application nanosecond pulsed fields (nsPEFs). The applied electric fields irreversibly permeabilize cell membranes and thereby kill myocytes while leaving the extracellular matrix intact.

Methods

In domestic pigs (n = 10), hearts were exposed via sternotomy and either ablated in vivo (\(n\) = 5) or in excised, Langendorff-perfused hearts (\(n\) = 5). The nsPEFs consisted of 6–36 pulses of 300 ns each, delivered at 3–6 Hz; the voltage applied varied from 10 to 12 kV. Atrial lesions were either created after inserting the bottom jaw of the bipolar clamp into the atrium via a purse string incision (2–3 lesions per atrium) or by clamping a double layer of tissue at the appendages (one lesion per atrium). Ventricular lesions were created after an incision at the apex. The transmurality of each lesion was determined at three points along the lesion using a triphenyl tetrazolium chloride (TTC) stain.

Results

All 27 atrial lesions were transmural. This includes 13/13 purse string lesions (39/39 sections, tissue thickness 2.5–4.5 mm) and 14/14 appendage lesions (42/42 sections, tissue thickness 8–12 mm). All 3 right ventricular lesions were transmural (9/9 sections, 18 pulses per lesion). Left ventricular lesions were always transmural for 36 pulses (3/3 lesions, 9/9 sections). All lesions have highly consistent width across the wall. There were no pulse-induced arrhythmias or other complications during the procedure.

Conclusions

nsPEF ablation reliably created acute lesions in porcine atrial and ventricular myocardium. It has far better penetration and is faster than both radiofrequency ablation and cryoablation and it is free from thermal side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ad, N., R. M. Suri, J. S. Gammie, S. Sheng, S. M. O’Brien, and L. Henry. Surgical ablation of atrial fibrillation trends and outcomes in North America. J. Thorac Cardiovasc. Surg. 144(5):1051–1060, 2012. https://doi.org/10.1016/j.jtcvs.2012.07.065

    Article  PubMed  Google Scholar 

  2. Calkins, H., et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. Heart Rhythm. 14(10):e445–e494, 2017. https://doi.org/10.1016/j.hrthm.2017.07.009

    Article  PubMed  Google Scholar 

  3. Cox, J. L. The first Maze procedure. J. Thorac Cardiovasc. Surg. 141(5):1093–1097, 2011. https://doi.org/10.1016/j.jtcvs.2010.12.012

    Article  PubMed  Google Scholar 

  4. Damiano, R. J., Jr., and M. Bailey. The Cox-Maze IV procedure for lone atrial fibrillation. Multimed. Man Cardiothorac. Surg. 2007(723):mmcts 2007 002758, 2007. https://doi.org/10.1510/mmcts.2007.002758

    Article  PubMed  Google Scholar 

  5. Damiano, R. J., Jr., and R. K. Voeller. Biatrial lesion sets. J. Interv. Card. Electrophysiol. 20(3):95–99, 2007. https://doi.org/10.1007/s10840-007-9178-x

    Article  PubMed  Google Scholar 

  6. Gage, A. A., J. M. Baust, and J. G. Baust. Experimental cryosurgery investigations in vivo. Cryobiology. 59(3):229–243, 2009. https://doi.org/10.1016/j.cryobiol.2009.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hong, K. N., et al. Effect of epicardial fat on ablation performance: a three-energy source comparison. J. Card. Surg. 22(6):521–524, 2007. https://doi.org/10.1111/j.1540-8191.2007.00454.x

    Article  PubMed  Google Scholar 

  8. Khiabani, A. J., et al. The long-term outcomes and durability of the Cox-Maze IV procedure for atrial fibrillation. J. Thorac. Cardiovasc. Surg. 163:629, 2020. https://doi.org/10.1016/j.jtcvs.2020.04.100

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mack, M. J., et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 385(9986):2477–2484, 2015. https://doi.org/10.1016/s0140-6736(15)60308-7

    Article  PubMed  Google Scholar 

  10. McIntosh, R. L. A. A. A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys. Rev. Lett. 5:129–151, 2010. https://doi.org/10.1142/S1793048010001184

    Article  Google Scholar 

  11. Neel, H. B., III., and L. W. DeSanto. Cryosurgical control of cancer: effects of freeze rates, tumor temperatures, and ischemia. Ann. Otol. Rhinol. Laryngol. 82(5):716–723, 1973. https://doi.org/10.1177/000348947308200516

    Article  PubMed  Google Scholar 

  12. Neuber, J. U., F. Varghese, A. G. Pakhomov, and C. W. Zemlin. Using nanosecond shocks for cardiac defibrillation. Bioelectricity. 1(4):240–246, 2019. https://doi.org/10.1089/bioe.2019.0030

    Article  PubMed  PubMed Central  Google Scholar 

  13. Neven, K., et al. Safety and feasibility of closed chest epicardial catheter ablation using electroporation. Circ. Arrhythm Electrophysiol. 7(5):913–919, 2014. https://doi.org/10.1161/CIRCEP.114.001607

    Article  PubMed  Google Scholar 

  14. Neven, K., et al. Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ. Arrhythm Electrophysiol. 2017. https://doi.org/10.1161/CIRCEP.116.004672

    Article  PubMed  Google Scholar 

  15. Nuccitelli, R., et al. Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem. Biophys. Res. Commun. 343(2):351–360, 2006. https://doi.org/10.1016/j.bbrc.2006.02.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nuccitelli, R., et al. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int. J. Cancer. 125(2):438–445, 2009. https://doi.org/10.1002/ijc.24345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nuccitelli, R., K. Tran, S. Sheikh, B. Athos, M. Kreis, and P. Nuccitelli. Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int. J. Cancer. 127(7):1727–1736, 2010. https://doi.org/10.1002/ijc.25364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pakhomov, A. G., and O. N. Pakhomova. The interplay of excitation and electroporation in nanosecond pulse stimulation. Bioelectrochemistry.136:107598, 2020. https://doi.org/10.1016/j.bioelechem.2020.107598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Philpott, J. M., C. W. Zemlin, and R. J. Daminano. Surgical Treatment of Atrial Fibrillation. Cambridge: Academic Press, 2017

    Google Scholar 

  20. Pliquett, U., and R. Nuccitelli. Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields. Bioelectrochemistry. 100:62–68, 2014. https://doi.org/10.1016/j.bioelechem.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  21. Prasad, S. M., et al. The Cox maze III procedure for atrial fibrillation: long-term efficacy in patients undergoing lone versus concomitant procedures. J. Thorac. Cardiovasc. Surg. 126(6):1822–1828, 2003. https://doi.org/10.1016/s0022-5223(03)01287-x

    Article  PubMed  Google Scholar 

  22. Reddy, V. Y., et al. Pulsed field ablation of paroxysmal atrial fibrillation: 1-year outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin. Electrophysiol. 7(5):614–627, 2021. https://doi.org/10.1016/j.jacep.2021.02.014

    Article  PubMed  Google Scholar 

  23. Semenov, I., et al. Excitation and injury of adult ventricular cardiomyocytes by nano- to millisecond electric shocks. Sci. Rep. 8(1):8233, 2018. https://doi.org/10.1038/s41598-018-26521-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Semenov, I., C. Zemlin, O. N. Pakhomova, S. Xiao, and A. G. Pakhomov. Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses. Biochim. Biophys. Acta. 1848(10 Pt A):2118–2125, 2015. https://doi.org/10.1016/j.bbamem.2015.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Es, R., M. H. A. Groen, M. Stehouwer, P. A. Doevendans, F. H. M. Wittkampf, and K. Neven. In vitro analysis of the origin and characteristics of gaseous microemboli during catheter electroporation ablation. J. Cardiovasc. Electrophysiol. 30(10):2071–2079, 2019. https://doi.org/10.1111/jce.14091

    Article  PubMed  Google Scholar 

  26. Varghese, F., J. U. Neuber, F. Xie, J. M. Philpott, A. G. Pakhomov, and C. W. Zemlin. Low-energy defibrillation with nanosecond electric shocks. Cardiovasc. Res. 113(14):1789–1797, 2017. https://doi.org/10.1093/cvr/cvx172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Voeller, R. K., A. Zierer, R. B. Schuessler, and R. J. Damiano Jr. Performance of a novel dual-electrode bipolar radiofrequency ablation device: a chronic porcine study. Innovations (Phila). 6(1):17–22, 2011. https://doi.org/10.1097/IMI.0b013e31820bc57f

    Article  PubMed  Google Scholar 

  28. Vyas, A., and Y. Lokhandwala. Coronary sinus as a site for stable temporary atrial pacing to tide over premature ventricular complex-triggered recurrent ventricular fibrillation in a patient with severe left ventricular dysfunction after coronary bypass surgery. Indian Heart J. 70(Suppl 3):S483–S485, 2018. https://doi.org/10.1016/j.ihj.2018.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weimar, T., et al. The cox-maze procedure for lone atrial fibrillation: a single-center experience over 2 decades. Circ. Arrhythm Electrophysiol. 5(1):8–14, 2012. https://doi.org/10.1161/CIRCEP.111.963819

    Article  PubMed  Google Scholar 

  30. Weimar, T., A. M. Lee, S. Ray, R. B. Schuessler, and R. J. Damiano Jr. Evaluation of a novel cryoablation system: in vivo testing in a chronic porcine model. Innovations (Phila). 7(6):410–416, 2012. https://doi.org/10.1097/IMI.0b013e31828534e5

    Article  PubMed  Google Scholar 

  31. Xie, F., et al. Ablation of myocardial tissue with nanosecond pulsed electric fields. PLoS ONE.10(12):e0144833, 2015. https://doi.org/10.1371/journal.pone.0144833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie, F., and C. W. Zemlin. Effect of twisted fiber anisotropy in cardiac tissue on ablation with pulsed electric fields. PLoS ONE.11(4):e0152262, 2016. https://doi.org/10.1371/journal.pone.0152262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zemlin, C. W. Safety factor for electrostimulation with nanosecond pulses. Bioelectrochemistry.141:107882, 2021. https://doi.org/10.1016/j.bioelechem.2021.107882

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

CZ holds stock in Pulse Biosciences.

Funding

This study was funded by a grant from Pulse Biosciences (Hayward, CA) to CZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian W. Zemlin.

Additional information

Associate Editor Crystal Ripplinger oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, F., Philpott, J.M., Neuber, J.U. et al. Surgical Ablation of Cardiac Tissue with Nanosecond Pulsed Electric Fields in Swine. Cardiovasc Eng Tech 14, 52–59 (2023). https://doi.org/10.1007/s13239-022-00634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00634-2

Keywords

Navigation