Skip to main content

Advertisement

Log in

Comparison of Prospective and Retrospective Gated 4D Flow Cardiac MR Image Acquisitions in the Carotid Bifurcation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the agreement of 4D flow cMRI-derived bulk flow features and fluid (blood) velocities in the carotid bifurcation using prospective and retrospective gating techniques.

Methods

Prospective and retrospective ECG-gated three-dimensional (3D) cine phase-contrast cardiac MRI with three-direction velocity encoding (i.e., 4D flow cMRI) data were acquired in ten carotid bifurcations from men (n = 3) and women (n = 2) that were cardiovascular disease-free. MRI sequence parameters were held constant across all scans except temporal resolution values differed. Velocity data were extracted from the fluid domain and evaluated across the entire volume or at defined anatomic planes (common, internal, external carotid arteries). Qualitative agreement between gating techniques was performed by visualizing flow streamlines and topographical images, and statistical comparisons between gating techniques were performed across the fluid volume and defined anatomic regions.

Results

Agreement in the kinematic data (e.g., bulk flow features and velocity data) were observed in the prospectively and retrospectively gated acquisitions. Voxel differences in time-averaged, peak systolic, and diastolic-averaged velocity magnitudes between gating techniques across all volunteers were 2.7%, 1.2%, and 6.4%, respectively. No significant differences in velocity magnitudes or components (\({v}_{r}\), \({v}_{\theta }\), \({v}_{z}\)) were observed. Importantly, retrospective acquisitions captured increased retrograde flow in the internal carotid artery (i.e., carotid sinus) compared to prospective acquisitions (10.4 ± 6.3% vs. 4.6 ± 5.3%; \(p\) < 0.05).

Conclusion

Prospective and retrospective ECG-gated 4D flow cMRI acquisitions provide comparable evaluations of fluid velocities, including velocity vector components, in the carotid bifurcation. However, the increased temporal coverage of retrospective acquisitions depicts increased retrograde flow patterns (i.e., disturbed flow) not captured by the prospective gating technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ayachit, U. The ParaView Guide: A Parallel Visualization Application. Clifton Park: Kitware Inc, p. 262, 2015

    Google Scholar 

  2. Barker, A. J., M. Markl, J. Bürk, R. Lorenz, J. Bock, S. Bauer, J. Schulz-Menger, and F. von Knobelsdorff-Brenkenhoff. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging. 2012. https://doi.org/10.1161/CIRCIMAGING.112.973370

    Article  PubMed  Google Scholar 

  3. Beck, M. J., D. L. Parker, B. D. Bolster, S. E. Kim, J. S. McNally, G. S. Treiman, and J. R. Hadley. Interchangeable neck shape–specific coils for a clinically realizable anterior neck phased array system. Magn. Reson. Med. 2017. https://doi.org/10.1002/mrm.26632

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bharadvaj, B. K., R. F. Mabon, and D. P. Giddens. Steady flow in a model of the human carotid bifurcation. Part I–flow visualization. J. Biomech. 1982. https://doi.org/10.1016/0021-9290(82)90057-4

    Article  PubMed  Google Scholar 

  5. CIBC. Seg3D: Volumetric Image Segmentation and Visualization. Toronto: Center for Integrative Biomedical Computing, Scientific Computing and Imaging Institute, 2016

    Google Scholar 

  6. Driessen, M. M. P., M. A. Schings, G. T. Sieswerda, P. A. Doevendans, E. H. Hulzebos, M. C. Post, R. J. Snijder, J. J. M. Westenberg, A. P. J. Van Dijk, F. J. Meijboom, and T. Leiner. Tricuspid flow and regurgitation in congenital heart disease and pulmonary hypertension: comparison of 4D flow cardiovascular magnetic resonance and echocardiography. J. Cardiovasc. Magn. Reson. 2018. https://doi.org/10.1186/s12968-017-0426-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dyverfeldt, P., M. Bissell, A. J. Barker, A. F. Bolger, C. J. Carlhäll, T. Ebbers, C. J. Francios, A. Frydrychowicz, J. Geiger, D. Giese, M. D. Hope, P. J. Kilner, S. Kozerke, S. Myerson, S. Neubauer, O. Wieben, and M. Markl. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015. https://doi.org/10.1186/s12968-015-0174-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ebel, S., L. Hübner, B. Köhler, S. Kropf, B. Preim, B. Jung, M. Grothoff, and M. Gutberlet. Validation of two accelerated 4D flow MRI sequences at 3T: a phantom study. Eur. Radiol. Exp. 2019. https://doi.org/10.1186/s41747-019-0089-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fries, P., A. Mamann, R. Seidel, A. Müller, J. Stroeder, F. Custodis, J. Reil, G. Schneider, and A. Buecker. Comparison of retrospectively self-gated and prospectively triggered FLASH sequences for cine imaging of the Aorta in mice at 9.4 Tesla. Invest. Radiol. 2012. https://doi.org/10.1097/RLI.0b013e31823d3eb6

    Article  PubMed  Google Scholar 

  10. Gabbour, M., S. Schnell, K. Jarvis, J. D. Robinson, M. Markl, and C. K. Rigsby. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatr. Radiol. 2015. https://doi.org/10.1007/s00247-014-3246-z

    Article  PubMed  Google Scholar 

  11. Guzzardi, D. G., A. J. Barker, P. van Ooij, S. C. Malaisrie, J. J. Puthumana, D. D. Belke, H. E. M. Mewhort, D. A. Svystonyuk, S. Kang, S. Verma, J. Collins, J. Carr, R. O. Bonow, M. Markl, J. D. Thomas, P. M. McCarthy, and P. W. M. Fedak. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J. Am. Coll. Cardiol. 2015. https://doi.org/10.1016/j.jacc.2015.06.1310

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hansen, C. D., and C. R. Johnson. The Visualization Handbook. Burlington: Elsevier, p. 962, 2005

    Google Scholar 

  13. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 1996. https://doi.org/10.1115/1.2795948

    Article  PubMed  Google Scholar 

  14. Heijman, E., W. de Graaf, P. Niessen, A. Nauerth, G. van Eys, L. de Graaf, K. Nicolay, and G. J. Strijkers. Comparision between prospective and retrospetive triggering for mouse cardiac MRI. NMR Biomed. 2007. https://doi.org/10.1002/nbm

    Article  PubMed  Google Scholar 

  15. Iffrig, E., L. H. Timmins, R. El Sayed, W. R. Taylor, and J. N. Oshinski. A new method for quantifying abdominal aortic wall shear stress using phase contrast magnetic resonance and the Womersley solution. J. Biomech. Eng.144(9):091011, 2022

    Article  PubMed  Google Scholar 

  16. Kroeger, J. R., F. C. Pavesio, R. Mörsdorf, K. Weiss, A. C. Bunck, B. Baeßler, D. Maintz, and D. Giese. Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CMR. Eur. J. Radiol. 2021. https://doi.org/10.1016/j.ejrad.2021.109570

    Article  PubMed  Google Scholar 

  17. Ku, D. N., and D. P. Giddens. Pulsatile flow in a model carotid bifurcation. Arteriosclerosis. 1983. https://doi.org/10.1161/01.atv.3.1.31

    Article  PubMed  Google Scholar 

  18. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985. https://doi.org/10.1161/01.atv.5.3.293

    Article  PubMed  Google Scholar 

  19. Lanzer, P., C. Barta, E. H. Botvinick, H. U. Wiesendanger, G. Modin, and C. B. Higgins. ECG-synchronized cardiac MR imaging: method and evaluation. Radiology. 1985. https://doi.org/10.1148/radiology.155.3.4001369

    Article  PubMed  Google Scholar 

  20. Lanzer, P., E. H. Botvinick, N. B. Schiller, L. E. Crooks, M. Arakawa, L. Kaufman, P. L. Davis, R. Herfkens, M. J. Lipton, and C. B. Higgins. Cardiac imaging using gated magnetic resonance. Radiology. 1984. https://doi.org/10.1148/radiology.150.1.6227934

    Article  PubMed  Google Scholar 

  21. Lin, L.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989. https://doi.org/10.2307/2532051

    Article  PubMed  Google Scholar 

  22. Lotz, J., C. Meier, A. Leppert, and M. Galanski. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002. https://doi.org/10.1148/radiographics.22.3.g02ma11651

    Article  PubMed  Google Scholar 

  23. Markl, M., A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben. 4D flow MRI. J. Magn. Reson. Imaging. 2012. https://doi.org/10.1002/jmri.23632

    Article  PubMed  Google Scholar 

  24. Markl, M., W. Wallis, and A. Harloff. Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J. Magn. Reson. Imaging. 2011. https://doi.org/10.1002/jmri.22519

    Article  PubMed  Google Scholar 

  25. Martin Bland, J., and D. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986. https://doi.org/10.1016/S0140-6736(86)90837-8

    Article  Google Scholar 

  26. Moore, J. E., Jr., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. J. Biomech. Eng. 1994. https://doi.org/10.1115/1.2895692

    Article  PubMed  Google Scholar 

  27. Moore, J. E., Jr., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 1994. https://doi.org/10.1115/1.2895740

    Article  PubMed  Google Scholar 

  28. Moore, J. E., S. E. Maier, D. N. Ku, and P. Boesiger. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J. Appl. Physiol. 1994. https://doi.org/10.1152/jappl.1994.76.4.1520

    Article  PubMed  Google Scholar 

  29. Neuhaus, E., K. Weiss, R. Bastkowski, J. Koopmann, D. Maintz, and D. Giese. Accelerated aortic 4D flow cardiovascular magnetic resonance using compressed sensing: Applicability, validation and clinical integration. J. Cardiovasc. Magn. Reson. 2019. https://doi.org/10.1186/s12968-019-0573-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nijm, G. M., A. V. Sahakian, S. Swiryn, J. C. Carr, J. J. Sheehan, and A. C. Larson. Comparison of self-gated cine MRI retrospective cardiac synchronization algorithms. J. Magn. Reson. Imaging. 2008. https://doi.org/10.1002/jmri.21514

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oshinski, J. N., D. N. Ku, and R. I. Pettigrew. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels. Magn. Reson. Med. 1995. https://doi.org/10.1002/mrm.1910330208

    Article  PubMed  Google Scholar 

  32. Søndergaard, L., F. Ståhlberg, C. Thomsen, T. A. Spraggins, E. Gymoese, L. Malmgren, E. Müller, and O. Henriksen. Comparison between retrospective gating and ECG triggering in magnetic resonance velocity mapping. Magn. Reson. Imaging. 1993. https://doi.org/10.1016/0730-725X(93)90472-P

    Article  PubMed  Google Scholar 

  33. Stalder, A. F., M. F. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and M. Markl. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 2008. https://doi.org/10.1002/mrm.21778

    Article  PubMed  Google Scholar 

  34. Stankovic, Z., Z. Csatari, P. Deibert, W. Euringer, B. Jung, W. Kreisel, J. Geiger, M. F. Russe, M. Langer, and M. Markl. A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. Eur. J. Gastroenterol. Hepatol. 2013. https://doi.org/10.1097/MEG.0b013e32835e1297

    Article  PubMed  Google Scholar 

  35. Underwood, S. R., D. N. Firmin, R. H. Klipstein, R. S. Rees, and D. B. Longmore. Magnetic resonance velocity mapping: clinical application of a new technique. Br. Heart J. 1987. https://doi.org/10.1136/hrt.57.5.404

    Article  PubMed  PubMed Central  Google Scholar 

  36. van Ooij, P., M. Markl, J. D. Collins, J. C. Carr, C. Rigsby, R. O. Bonow, S. Chris Malaisrie, P. M. McCarthy, P. W. M. Fedak, and A. J. Barker. Aortic valve stenosis alters expression of regional aortic wall shear stress: new insights from a 4-dimensional flow magnetic resonance imaging study of 571 subjects. J. Am. Heart Assoc. 2017. https://doi.org/10.1161/JAHA.117.005959

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wald, I., G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther, and P. Navratil. OSPRay—a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 2017. https://doi.org/10.1109/TVCG.2016.2599041

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported with funding from the National Institutes of Health (R21 NS114602; JNO). This work utilized equipment that was purchased with funding from the National Institutes of Health (S10 D018482). Seg3D is an open-source software project that is supported by the National Institute of General Medical Sciences of the National Institutes of Health under grant number P41 GM103545 and R24 GM136986 (CRJ). The Authors thank Bea Hurd for assistance with illustrations.

Competing interest

The authors have no conflicts of interests or competing interests to declare.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for the publication of images in Fig. 1.

Ethical approval

Approval was obtained from the Institutional Review Boards at the University of Utah and Emory University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas H. Timmins.

Additional information

Associate Editor Keefe B. Manning oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurd, E.R., Han, M., Mendes, J.K. et al. Comparison of Prospective and Retrospective Gated 4D Flow Cardiac MR Image Acquisitions in the Carotid Bifurcation. Cardiovasc Eng Tech 14, 1–12 (2023). https://doi.org/10.1007/s13239-022-00630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00630-6

Keywords

Navigation