Skip to main content
Log in

Characterization of Surgical Tools for Specific Endovascular Navigation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to mechanically characterize a specific active guidewire and catheters that are commercially available, for further implementation into numerical simulation of endovascular navigation towards complex targets.

Methods

For the guidewire, 3-point bending tests and bending with added masses were used to obtain the Young moduli of its various components. To study its behavior, the guidewire was activated under “ideal” conditions and its performance was investigated. As for the various catheters, they were measured and 3-point bending tests were conducted to determine their mechanical properties.

Results & Conclusion

The Young moduli of the shaft and the distal tip of the guidewire were determined. We defined a suitable current intensity to activate the guidewire related to an optimal curvature. Then, the time of activation/deactivation was measured at 1.7 s. On the flip side, parts of the catheters were considered either elastic or viscoelastic. In all cases, the rigidity gradients along the various catheters were highlighted. The characterization of the aforementioned surgical tools provides the opportunity to simulate the endovascular nagivation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data Availability

Not applicable

Code Availability

Not applicable

References

  1. Adharapurapu, R. R., F. Jiang, K. S. Vecchio, and G. T. Gray. Response of NiTi shape memory alloy at high strain rate: a systematic investigation of temperature effects on tension-compression asymmetry. Acta Mater. 54(17):4609–4620, 2006.

    Article  CAS  Google Scholar 

  2. Ali, A., T. Szili-Torok, M. Stijnen, P. Breedveld, and D. Dodou. First expert evaluation of a new steerable catheter in an isolated beating heart. Cardiovasc. Eng. Technol. 11(6):769–782, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ananthan, V. S., and E. O. Hall. Macroscopic aspects of Lüders band deformation in mild steel. Acta Metall. Mater. 39(12), 3153–3160, 1991.

    Article  CAS  Google Scholar 

  4. Bechle, N. J., and S. Kyriakides. Localization in NiTi tubes under bending. Int. J. Solids Struct. 51(5):967–980, 2014.

    Article  CAS  Google Scholar 

  5. Benard, N., R. Perrault, and D. Coisne. Blood flow in coronary artery: numerical fluid dynamics analysis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:3800–3803, 2004.

    Google Scholar 

  6. Cho, Y., and K. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology, 28:241–262, 1991.

    Article  CAS  PubMed  Google Scholar 

  7. Couture, T., and J. Szewczyk. Design and Experimental Validation of an Active Catheter for Endovascular Navigation. J. Med. Devices, 1:011003, 2017.

    Google Scholar 

  8. Duerig, T., A. Pelton, and K. Bhattacharya. The measurement and interpretation of transformation temperatures in nitinol. Shape Memory Superelast., 3(4):485–498, 2017.

    Article  Google Scholar 

  9. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer, 1990.

    Book  Google Scholar 

  10. Ganet, F., M. Q. Le, J. F. Capsal, P. Lermusiaux, L. Petit, A. Millon, and P. J. Cottinet. Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci. Rep. 5(1):18593, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geneva, I. I., B. Cuzzo, T. Fazili, and W. Javaid. Normal body temperature: a systematic review. Open Forum Infect. Dis., 6(4):ofz032, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gindre, J., A. Bel-Brunon, M. Rochette, A. Lucas, A. Kaladji, P. Haigron, and A. Combescure. Patient-specific finite-element simulation of the insertion of guidewire during an EVAR procedure: guidewire position prediction validation on 28 cases. IEEE. Trans. Biomed. Eng. 64:1, 2016.

    Google Scholar 

  13. Goyal, S. S., M. M. Panditrao, and A. Garg. The accidental loss of guidewire during emergency femoral central venous cannulation: a case report. Adesh Univ. J. Med. Sci. Res., 2(1):61–63, 2020.

    Google Scholar 

  14. Haga, Y., Y. Tanahashi, and M. Esashi. Small diameter active catheter using shape memory alloy. In: Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No. 98CH36176, pp. 419–424, 1998. ISSN: 1084-6999.

  15. Harada, K., and J. Morioka. Initial experience with an extremely soft bare platinum coil, ED coil-10 Extra Soft, for endovascular treatment of cerebral aneurysms. J. Neurointerv. Surg. 5, 2012.

  16. Henderson, E., D. H. Nash, and W. M. Dempster. On the experimental testing of fine Nitinol wires for medical devices. J. Mech. Behav. Biomed. Mater. 4(3):261–268, 2011.

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann, L. R., and F. E. Peterson. A numerical procedure for viscoelastic stress analysis. In: Seventh Meeting of ICRPG Mechanical Behavior Working Group, Orlando, FL, 1968.

  18. Hoskins, P. R., T. Loupas, and W. N. McDicken. A comparison of the doppler spectra from human blood and artificial blood used in a flow phantom. Ultrasound Med. Biol. 16(2):141–147, 1990.

    Article  CAS  PubMed  Google Scholar 

  19. Ianucci, L., P. Robinson, and W. Wan A Hamid. The Development of a User Defined Material Model for NiTi SMA Wires, 2017.

  20. Jayender, J., R. V. Patel, and S. Nikumb. Robot-assisted Active Catheter Insertion: Algorithms and Experiments. Int. J. Robot. Res. 28(9):1101–1117, 2009. https://doi.org/10.1177/0278364909103785.

    Article  Google Scholar 

  21. Jiang, D., C. M. Landis, and S. Kyriakides. Effects of tension/compression asymmetry on the buckling and recovery of NiTi tubes under axial compression. Int. J. Solids Struct. 100–101:41–53, 2016.

    Article  Google Scholar 

  22. Kim, S., B. Prasad, and J. Kim. Alignment of microbeads using spinning helical minichannel cartridge. J. Korean Soc. Vis. 14:38–45, 2016.

    Google Scholar 

  23. Lagoudas, D. C. Shape Memory Alloys. Boston: Springer, 2008.

    Google Scholar 

  24. Lam, R. C., S. C. Lin, B. DeRubertis, R. Hynecek, K. C. Kent, and P. L. Faries. The impact of increasing age on anatomic factors affecting carotid angioplasty and stenting. J. Vasc. Surg. 45(5):875–880, 2007.

    Article  PubMed  Google Scholar 

  25. Liang, B., P. Chaudet, and P. Boisse. Curvature determination in the bending test of continuous fibre reinforcements: curvature determination in the bending of fibre reinforcements. Strain, 53:e12213, 2016.

    Article  Google Scholar 

  26. Liang, B., J. Colmars, and P. Boisse. A shell formulation for fibrous reinforcement forming simulations. Composites Part A 100:81–96, 2017.

    Article  CAS  Google Scholar 

  27. Liang, B., N. Hamila, M. Peillon, and P. Boisse. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations. Composites Part A 67:111–122, 2014.

    Article  CAS  Google Scholar 

  28. Lu, S.-H., and Y.-T. Dai. Normal body temperature and the effects of age, sex, ambient temperature and body mass index on normal oral temperature: a prospective, comparative study. Int. J. Nurs. Stud. 46(5):661–668, 2009.

    Article  PubMed  Google Scholar 

  29. Macdonald, S., R. Lee, R. Williams, and G. Stansby. Towards safer carotid artery stenting. Stroke 40(5):1698–1703, 2009.

    Article  PubMed  Google Scholar 

  30. Madhwal, S., V. Rajagopal, D. Bhatt, C. Bajzer, P. Whitlow, and S. Kapadia. Predictors of difficult carotid stenting as determined by aortic arch angiography. J. Invasive. Cardiol. 20:200–204, 2008.

    PubMed  Google Scholar 

  31. Maynadier, A., D. Depriester, K. Lavernhe-Taillard, and O. Hubert. Thermo-mechanical description of phase transformation in Ni-Ti Shape Memory Alloy. Procedia Eng. 10:2208–2213, 2011.

    Article  CAS  Google Scholar 

  32. McKelvey, A., and R. Ritchie. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. J. Biomed. Mater. Res. 47:301–308, 2000.

    Article  Google Scholar 

  33. McKelvey, A. L., and R. O. Ritchie. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall. Mater. Trans. A 32(13):731–743, 2001.

    Article  Google Scholar 

  34. Menut, M. Chirurgie endovasculaire virtuelle pour patient-spécifique: application au traitement de l’anévrisme de l’aorte thoracique. PhD Thesis, 2017.

  35. Mohammadi, H., S. Lessard, E. Therasse, R. Mongrain, and G. Soulez. A numerical preoperative planning model to predict arterial deformations in endovascular aortic aneurysm repair. Ann. Biomed. Eng. 46(12):2148–2161, 2018.

    Article  PubMed  Google Scholar 

  36. Moran, D. S., and L. Mendal. Core temperature measurement. Sports Med. 32(14):879–885, 2002.

    Article  PubMed  Google Scholar 

  37. Moravia, A., W. Pan, H. W. Berre, M. Menut, B. B. Said, M. E. Hajem, X. Escriva, P. Kulisa, S. Simoëns, P. Lermusiaux, A. Millon, and I. Naudin. In vitro assessment of abdominal aorta non-newtonian hemodynamics based on particle image velocimetry, 2019.

  38. Mouktadiri, G., B. Bou-Saïd, and H. Walter-Le-Berre. Aortic endovascular repair modeling using the finite element method. J. Biomed. Eng., 2013.

  39. Pušnik, I., and A. Miklavec. Dilemmas in measurement of human body temperature. Instrum. Sci. Tech., 37(5):516–530, 2009.

    Article  Google Scholar 

  40. Qasim, Z., M. Brenner, J. Menaker, and T. Scalea. Resuscitative endovascular balloon occlusion of the aorta. Resuscitation 96:275–279, 2015.

    Article  PubMed  Google Scholar 

  41. Qi, L., W. Zhu, W. Qian, L. Xu, Y. He, and F. Zhao. The performance of a spherical-tip catheter for stent post-dilation: finite element analysis and experiments. Front. Physiol. 12:1305, 2021.

    Article  Google Scholar 

  42. Rhee, R., B. Peterson, E. Moore, M. Lepore, and G. Oderich. Initial human experience with the GORE EXCLUDER conformable AAA endoprosthesis. J. Vasc. Surg. Cases Innov. Tech. 5:319–322, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Runciman, A., D. Xu, A. R. Pelton, and R. O. Ritchie. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Biomaterials 32(22), 4987–4993, 2011.

    Article  CAS  PubMed  Google Scholar 

  44. Segur, J. B., and H. E. Oberstar. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43(9):2117–2120, 1951.

    Article  CAS  Google Scholar 

  45. Shaw, J. A., and S. Kyriakides. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8):1243–1281, 1995.

    Article  CAS  Google Scholar 

  46. Sochi, T. Non-newtonian rheology in blood circulation, 2013.

  47. Spiotta, A. M., M. S. Hussain, T. Sivapatham, M. Bain, R. Gupta, S. I. Moskowitz, and F. K. Hui. The versatile distal access catheter: the cleveland clinic experience. Neurosurgery, 68(6):1677–1686, 2011.

    Article  PubMed  Google Scholar 

  48. Szewczyk, J. Process for manufacturing a flexible elongate structure having an orientable end, 2011.

  49. Szewczyk, J., E. Marchandise, P. Flaud, L. Royon, and R. Blanc. Active catheters for neuroradiology. J. Robotics Mechatronics 23:105–115, 2011.

    Article  Google Scholar 

  50. Tanaka, K., S. Kobayashi, and Y. Sato. Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int. J. Plast. 2(1):59–72, 1986.

    Article  CAS  Google Scholar 

  51. Tobushi, H., Y. Shimeno, T. Hachisuka, and K. Tanaka. Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mech. Mater. 30(2):141–150, 1998.

    Article  Google Scholar 

  52. Wayman, C. M., and T. W. Duerig. An introduction to martensite and shape memory. In: Engineering Aspects of Shape Memory Alloys, edited by T. W. Duerig, K. N. Melton, D. Stöckel, and C. M. Wayman, Oxford: Butterworth-Heinemann, pp. 3–20, 1990.

    Chapter  Google Scholar 

  53. Wilbring, M., M. Rehm, T. Ghazy, M. Amler, K. Matschke, and U. Kappert. Aortic arch mapping by computed tomography for actual anatomic studies in times of emerging endovascular therapies. Ann. Vasc. Surg. 30, 2015.

Download references

Funding

The French National Research Agency (ANR) partially supported this work through the DEEP project: Devices for augmEnted Endovascular navigation in complex Pathways (Grant n°ANR-18-CE19-0027-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bel-Brunon.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Associate Editor Pedro del Nido oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badrou, A., Tardif, N., Even, A. et al. Characterization of Surgical Tools for Specific Endovascular Navigation. Cardiovasc Eng Tech 13, 751–763 (2022). https://doi.org/10.1007/s13239-022-00612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00612-8

Keywords

Navigation