Skip to main content
Log in

Cell-Laden Bioactive Poly(ethylene glycol) Hydrogels for Studying Mesenchymal Stem Cell Behavior in Myocardial Infarct-Stiffness Microenvironments

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Cellular therapy with mesenchymal stem cells (MSCs) shows promise for restoring function after myocardial infarction (MI). However, cellular therapy has yet to be clinically translated, in part because of difficulty in studying how MSCs interact with the post-MI scar microenvironment. This study aimed to design an in vitro model to study MSC behavior in the post-MI scar stiffness microenvironment.

Methods

Using poly(ethylene glycol)-acrylate (PEG) conjugated to bioactive peptides, rat MSCs were encapsulated in hydrogels of varying stiffnesses and crosslinking densities. Cell viability was assessed through 14 days using calcein and ethidium homodimer staining. To simulate post-MI pro-fibrotic signaling, transforming growth factor-beta (TGFβ) was added to selected cultures. Immunofluorescence and qRT-PCR were used to assess changes in cardiac transdifferentiation or paracrine secretion, two proposed methods of MSCs in cellular therapy.

Results

Bioactivated PEG hydrogels with stiffnesses between 1.6 and 151.0 kPa were prepared. Rat MSCs demonstrated up to 71.6% viability after 3 days of encapsulated culture, and survived within the hydrogels up to 14 days. Encapsulation decreased MSC expression of cardiac troponin T and most growth factors, except interleukin-6. Meanwhile, TGFβ caused increased cardiac troponin T expression but decreased secreted factor expression. Varying hydrogel stiffness did not have an effect on cardiac troponin T or secreted factor expression.

Conclusions

These findings suggest that a 3D microenvironment hinders two key mechanisms by which MSCs could improve cardiac function after post-MI scar formation, namely cardiac transdifferentiation and secreted factor production. Future studies incorporating MSCs other cell types should broaden understanding of the post-MI scar microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

ACTN2:

α-Actinin

cTnT:

Cardiac troponin T

GJA1:

Connexin-43 (gap junction A1)

ECM:

Extracellular matrix

MI:

Myocardial infarction

MSCs:

Mesenchymal stem cells

rMSCs:

Rat mesenchymal stem cells

MyHC:

Cardiac heavy chain myosin

PEG:

Poly(ethylene glycol)-diacrylate

qRT-PCR:

Quantitative real-time polymerase chain reaction

ROS:

Reactive oxygen species

SVA:

Succinimidyl valeric acid

TCPS:

Tissue culture poly(styrene)

TGFβ:

Transforming growth factor-beta

References

  1. Benjamin, E. J., P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway, A. P. Carson, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528, 2019. https://doi.org/10.1161/CIR.0000000000000659.

    Article  Google Scholar 

  2. Chen, Z., L. Chen, C. Zeng, and W. E. Wang. Functionally improved mesenchymal stem cells to better treat myocardial infarction. Stem Cells Int. 2018:7045245, 2018. https://doi.org/10.1155/2018/7045245.

    Article  Google Scholar 

  3. Moris, D., M. Spartalis, E. Spartalis, G. S. Karachaliou, G. I. Karaolanis, G. Tsourouflis, et al. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med. 5(16):326, 2017. https://doi.org/10.21037/atm.2017.06.27.

    Article  Google Scholar 

  4. Frangogiannis, N. G. The role of transforming growth factor (TGF)-beta in the infarcted myocardium. J. Thorac. Dis. 9(Suppl 1):S52–S63, 2017. https://doi.org/10.21037/jtd.2016.11.19.

    Article  Google Scholar 

  5. Dobaczewski, M., M. Bujak, N. Li, C. Gonzalez-Quesada, L. H. Mendoza, X. F. Wang, et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res. 107(3):418–428, 2010. https://doi.org/10.1161/CIRCRESAHA.109.216101.

    Article  Google Scholar 

  6. McCormick, R. J., T. I. Musch, B. C. Bergman, and D. P. Thomas. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am. J. Physiol. Heart. Circ. Physiol. 266(1):H354–H359, 1994.

    Article  Google Scholar 

  7. Fomovsky, G. M., and J. W. Holmes. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol. Heart. Circ. Physiol. 298(1):H221–H228, 2010. https://doi.org/10.1152/ajpheart.00495.2009.

    Article  Google Scholar 

  8. Bujak, M., and N. G. Frangogiannis. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74(2):184–195, 2007. https://doi.org/10.1016/j.cardiores.2006.10.002.

    Article  Google Scholar 

  9. Ellmers, L. J., N. J. Scott, S. Medicherla, A. P. Pilbrow, P. G. Bridgman, T. G. Yandle, et al. Transforming growth factor-beta blockade down-regulates the renin-angiotensin system and modifies cardiac remodeling after myocardial infarction. Endocrinology 149(11):5828–5834, 2008. https://doi.org/10.1210/en.2008-0165.

    Article  Google Scholar 

  10. Londono, R., and S. F. Badylak. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann. Biomed. Eng. 43(3):577–592, 2015. https://doi.org/10.1007/s10439-014-1103-8.

    Article  Google Scholar 

  11. Schweller, R. M., and J. L. West. Encoding hydrogel mechanics via network cross-linking structure. ACS Biomater. Sci. Eng. 1(5):335–344, 2015. https://doi.org/10.1021/acsbiomaterials.5b00064.

    Article  Google Scholar 

  12. Wu, Y., K. J. Grande-Allen, and J. L. West. Adhesive peptide sequences regulate valve interstitial cell adhesion, phenotype and extracellular matrix deposition. Cell. Mol. Bioeng. 9(4):479–495, 2016. https://doi.org/10.1007/s12195-016-0451-x.

    Article  Google Scholar 

  13. Moon, J. J., J. E. Saik, R. A. Poche, J. E. Leslie-Barbick, S. H. Lee, A. A. Smith, et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31(14):3840–3847, 2010. https://doi.org/10.1016/j.biomaterials.2010.01.104.

    Article  Google Scholar 

  14. Puperi, D. S., L. R. Balaoing, R. W. O’Connell, J. L. West, and K. J. Grande-Allen. 3-Dimensional spatially organized PEG-based hydrogels for an aortic valve co-culture model. Biomaterials 67:354–364, 2015. https://doi.org/10.1016/j.biomaterials.2015.07.039.

    Article  Google Scholar 

  15. Bahney, C., T. Lujan, C. Hsu, M. Bottlang, J. West, and B. Johnstone. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur. Cells Mater. 22:43, 2011.

    Article  Google Scholar 

  16. Carpenter, A. E., T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, et al. Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10):R100, 2006. https://doi.org/10.1186/gb-2006-7-10-r100.

    Article  Google Scholar 

  17. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc, 2020. http://www.rstudio.com/.

  18. Hinz, B. Tissue stiffness, latent TGF-β1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr. Rheumatol. Rep. 11(2):120, 2009.

    Article  Google Scholar 

  19. Li, Z., X. Guo, A. F. Palmer, H. Das, and J. Guan. High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel. Acta Biomater. 8(10):3586–3595, 2012. https://doi.org/10.1016/j.actbio.2012.06.024.

    Article  Google Scholar 

  20. Hirata, M., and T. Yamaoka. Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomater. 65:44–52, 2018. https://doi.org/10.1016/j.actbio.2017.10.032.

    Article  Google Scholar 

  21. Caliari, S. R., and J. A. Burdick. A practical guide to hydrogels for cell culture. Nat. Methods 13(5):405–414, 2016. https://doi.org/10.1038/nmeth.3839.

    Article  Google Scholar 

  22. Pislaru, C., M. W. Urban, S. V. Pislaru, R. R. Kinnick, and J. F. Greenleaf. Viscoelastic properties of normal and infarcted myocardium measured by a multifrequency shear wave method: comparison with pressure-segment length method. Ultrasound Med. Biol. 40(8):1785–1795, 2014. https://doi.org/10.1016/j.ultrasmedbio.2014.03.004.

    Article  Google Scholar 

  23. Kolipaka, A., K. P. McGee, A. Manduca, N. Anavekar, R. L. Ehman, and P. A. Araoz. In vivo assessment of MR elastography-derived effective end-diastolic myocardial stiffness under different loading conditions. J. Magn. Reson. Imaging 33(5):1224–1228, 2011. https://doi.org/10.1002/jmri.22531.

    Article  Google Scholar 

  24. Jung, J. P., M. K. Bache-Wiig, P. P. Provenzano, and B. M. Ogle. Heterogeneous differentiation of human mesenchymal stem cells in 3D extracellular matrix composites. Biores. Open Access. 5(1):37–48, 2016. https://doi.org/10.1089/biores.2015.0044.

    Article  Google Scholar 

  25. Santiago, J. A., R. Pogemiller, and B. M. Ogle. Heterogeneous differentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices. Tissue Eng. Part A 15(12):3911–3922, 2009.

    Article  Google Scholar 

  26. Golpanian, S., A. Wolf, K. E. Hatzistergos, and J. M. Hare. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol. Rev. 96(3):1127–1168, 2016. https://doi.org/10.1152/physrev.00019.2015.

    Article  Google Scholar 

  27. Bolli, R., J. M. Hare, T. D. Henry, C. G. Lenneman, K. L. March, K. Miller, et al. Rationale and design of the SENECA (StEm cell iNjECtion in cAncer survivors) trial. Am. Heart J. 201:54–62, 2018. https://doi.org/10.1016/j.ahj.2018.02.009.

    Article  Google Scholar 

  28. Harburger, D. S., and D. A. Calderwood. Integrin signalling at a glance. J. Cell Sci. 122(Pt 2):159–163, 2009. https://doi.org/10.1242/jcs.018093.

    Article  Google Scholar 

  29. Williams, C., K. P. Quinn, I. Georgakoudi, and L. D. Black, 3rd. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 10(1):194–204, 2014. https://doi.org/10.1016/j.actbio.2013.08.037.

    Article  Google Scholar 

  30. Mohanty, S., S. Bose, K. G. Jain, B. Bhargava, and B. Airan. TGFbeta1 contributes to cardiomyogenic-like differentiation of human bone marrow mesenchymal stem cells. Int. J. Cardiol. 163(1):93–99, 2013. https://doi.org/10.1016/j.ijcard.2011.08.003.

    Article  Google Scholar 

  31. Kakkar, A., S. B. Nandy, S. Gupta, B. Bharagava, B. Airan, and S. Mohanty. Adipose tissue derived mesenchymal stem cells are better respondents to TGFbeta1 for in vitro generation of cardiomyocyte-like cells. Mol. Cell. Biochem. 460(1–2):53–66, 2019. https://doi.org/10.1007/s11010-019-03570-3.

    Article  Google Scholar 

  32. van Dijk, A., H. W. Niessen, W. Ursem, J. W. Twisk, F. C. Visser, and F. J. van Milligen. Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells. Cell Tissue Res. 332(2):289–298, 2008. https://doi.org/10.1007/s00441-008-0573-0.

    Article  Google Scholar 

  33. Jian, Z., H. Han, T. Zhang, J. Puglisi, L. T. Izu, J. A. Shaw, et al. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci. Signal. 7(317):r27, 2014.

    Article  Google Scholar 

  34. Crocini, C., C. J. Walker, K. S. Anseth, and L. A. Leinwand. Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness. Prog. Biophys. Mol. Biol. 154:71–79, 2020. https://doi.org/10.1016/j.pbiomolbio.2019.04.008.

    Article  Google Scholar 

  35. Jeffords, M. E., J. Wu, M. Shah, Y. Hong, and G. Zhang. Tailoring material properties of cardiac matrix hydrogels to induce endothelial differentiation of human mesenchymal stem cells. ACS Appl. Mater. Interfaces. 7(20):11053–11061, 2015. https://doi.org/10.1021/acsami.5b03195.

    Article  Google Scholar 

  36. Young, J. L., and A. J. Engler. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32(4):1002–1009, 2011. https://doi.org/10.1016/j.biomaterials.2010.10.020.

    Article  Google Scholar 

  37. Dalby, M. J., A. J. García, and M. Salmeron-Sanchez. Receptor control in mesenchymal stem cell engineering. Nat. Rev. Mater. 2018. https://doi.org/10.1038/natrevmats.2017.91.

    Article  Google Scholar 

  38. He, X., L. Li, M. Tang, Y. Zeng, H. Li, and X. Yu. Biomimetic electrical stimulation induces rat bone marrow mesenchymal stem cells to differentiate into cardiomyocyte-like cells via TGF-beta 1 in vitro. Prog. Biophys. Mol. Biol. 148:47–53, 2019. https://doi.org/10.1016/j.pbiomolbio.2017.09.023.

    Article  Google Scholar 

  39. Jia, S., D. Yu, Y. Zhu, X. Su, Z. Wang, and L. Chen. A feasible strategy to constructing hybrid conductive networks in PLA-based composites modified by CNT-d-RGO particles and PEG for mechanical and electrical properties. Polym. Adv. Technol. 31(4):699–712, 2019. https://doi.org/10.1002/pat.4806.

    Article  Google Scholar 

  40. Blondiaux, E., L. Pidial, G. Autret, G. Rahmi, D. Balvay, E. Audureau, et al. Bone marrow-derived mesenchymal stem cell-loaded fibrin patches act as a reservoir of paracrine factors in chronic myocardial infarction. J Tissue Eng Regen Med. 11(12):3417–3427, 2017. https://doi.org/10.1002/term.2255.

    Article  Google Scholar 

  41. Pal, M., M. A. Febbraio, and M. Whitham. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol. 92(4):331–339, 2014. https://doi.org/10.1038/icb.2014.16.

    Article  Google Scholar 

  42. Pricola, K. L., N. Z. Kuhn, H. Haleem-Smith, Y. Song, and R. S. Tuan. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J. Cell. Biochem. 108(3):577–588, 2009. https://doi.org/10.1002/jcb.22289.

    Article  Google Scholar 

  43. Blocki, A., S. Beyer, J. Y. Dewavrin, A. Goralczyk, Y. Wang, P. Peh, et al. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials 53:12–24, 2015. https://doi.org/10.1016/j.biomaterials.2015.02.075.

    Article  Google Scholar 

  44. Nagaya, N., T. Fujii, T. Iwase, H. Ohgushi, T. Itoh, M. Uematsu, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am. J. Physiol. Heart Circ. Physiol. 287(6):H2670–H2676, 2004. https://doi.org/10.1152/ajpheart.01071.2003.

    Article  Google Scholar 

  45. Bolli, R., J. M. Hare, K. L. March, C. J. Pepine, J. T. Willerson, E. C. Perin, et al. Rationale and design of the CONCERT-HF trial (combination of mesenchymal and c-kit(+) cardiac stem cells as regenerative therapy for heart failure). Circ. Res. 122(12):1703–1715, 2018. https://doi.org/10.1161/CIRCRESAHA.118.312978.

    Article  Google Scholar 

  46. Choe, G., J. Park, H. Jo, Y. S. Kim, Y. Ahn, and J. Y. Lee. Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system. Int. J. Biol. Macromol. 123:512–520, 2019. https://doi.org/10.1016/j.ijbiomac.2018.11.115.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an American Association for Thoracic Surgery Graham Foundation Grant to RKG. The authors thank Scott Weldon for illustration of Fig. 1, the Baylor College of Medicine Integrated Microscopy Core for assistance in acquiring confocal images, and Dr. Jennifer P. Connell for her edits and critical feedback.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi K. Ghanta.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sylvester, C.B., Pugazenthi, A., Grande-Allen, K.J. et al. Cell-Laden Bioactive Poly(ethylene glycol) Hydrogels for Studying Mesenchymal Stem Cell Behavior in Myocardial Infarct-Stiffness Microenvironments. Cardiovasc Eng Tech 12, 183–199 (2021). https://doi.org/10.1007/s13239-020-00515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00515-6

Keywords

Navigation