Skip to main content
Log in

Impact of Mitral Regurgitation on the Flow in a Model of a Left Ventricle

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Mitral regurgitation (MR) is the second most common valve disease in industrialized countries. Despite its high prevalence, little is known about its impact on the flow dynamics in the left ventricle (LV). Because of the interdependence between valvular function and hemodynamics in the heart chambers, an exploration of the dynamics in the LV could lead to a diagnosis of MR. This in vitro study aimed to develop an advanced left heart simulator capable of reproducing several conditions of MR and to evaluate their impact on the LV flow dynamics in terms of flow structures and viscous energy dissipation (VED).

Methods

A simulator, previously developed to test mechanical and biological valves, was upgraded with an original anatomically-shaped mitral valve made from a hydrogel. The valve can be used in healthy or pathological configurations. The nature and severity of the disease was controlled by applying specific strain to the chordae. In this study, in addition to a healthy condition, two different severities of MR were investigated: moderate MR and severe MR. Planar time-resolved particle image velocimetry measurements were performed in order to evaluate the velocity field in the LV and the VED induced by each condition.

Results

Our results showed that MR led to flow disturbances in the LV that were characterized by an increase in mitral inflow velocity and by elevated values of VED. Interestingly VED increased in proportion to the severity of MR and with a dissipation predominating during systole.

Conclusion

Considering these results, the introduction of new parameters based on LV VED could provide crucial information regarding the coupling between the mitral valve and the LV and allow for a better stratification of patients with MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

MV:

Mitral valve

LV:

Left ventricle

MR:

Mitral regurgitation

PIV:

Particle image velocimetry

VED:

Viscous energy dissipation

MRI:

Magnetic resonance imaging

Echo-PIV:

Echocardiographic PIV

References

  1. Akiyama, K., S. Maeda, T. Matsuyama, A. Kainuma, M. Ishii, Y. Naito, M. Kinoshita, S. Hamaoka, H. Kato, Y. Nakajima, N. Nakamura, K. Itatani, and T. Sawa. Vector flow mapping analysis of left ventricular energetic performance in healthy adult volunteers. BMC Cardiovasc. Disord. 2017. https://doi.org/10.1186/s12872-016-0444-7.

    Article  Google Scholar 

  2. Barker, A. J., P. van Ooij, K. Bandi, J. Garcia, M. Albaghdadi, P. McCarthy, R. O. Bonow, J. Carr, J. Collins, S. C. Malaisrie, and M. Markl. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 72:620–628, 2014. https://doi.org/10.1002/mrm.24962.

    Article  Google Scholar 

  3. Baumgartner, H., V. Falk, J. J. Bax, M. De Bonis, C. Hamm, P. J. Holm, B. Iung, P. Lancellotti, E. Lansac, D. Rodriguez Muñoz, R. Rosenhek, J. Sjögren, P. Tornos Mas, A. Vahanian, T. Walther, O. Wendler, S. Windecker, J. L. Zamorano, and ESC Scientific Document Group. ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 38(2017):2739–2791, 2017. https://doi.org/10.1093/eurheartj/ehx391.

    Article  Google Scholar 

  4. Bolger, A. F., E. Heiberg, M. Karlsson, L. Wigström, J. Engvall, A. Sigfridsson, T. Ebbers, J.-P. E. Kvitting, C. J. Carlhäll, and B. Wranne. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9:741–747, 2007. https://doi.org/10.1080/10976640701544530.

    Article  Google Scholar 

  5. Buck, T., C. H. P. Jansen, A. P. Yoganathan, R. A. Levine, and M. D. Handschumacher. Hemisphere versus hemiellipse: when is each most accurate for proximal isovelocity calculation of regurgitant flows. J. Am. Coll. Cardiol. 31:385, 1998. https://doi.org/10.1016/S0735-1097(98)80025-9.

    Article  Google Scholar 

  6. Chandran, K. B., R. Schoephoerster, and K. C. Dellsperger. Effect of prosthetic mitral valve geometry and orientation on flow dynamics in a model human left ventricle. J. Biomech. 22:51–65, 1989. https://doi.org/10.1016/0021-9290(89)90184-x.

    Article  Google Scholar 

  7. Cimino, S., G. Pedrizzetti, G. Tonti, E. Canali, V. Petronilli, L. De Luca, C. Iacoboni, and L. Agati. In vivo analysis of intraventricular fluid dynamics in healthy hearts. Eur. J. Mech. B 35:40–46, 2012. https://doi.org/10.1016/j.euromechflu.2012.03.014.

    Article  MATH  Google Scholar 

  8. Di Labbio, G., and L. Kadem. Jet collisions and vortex reversal in the human left ventricle. J. Biomech. 78:155–160, 2018. https://doi.org/10.1016/j.jbiomech.2018.07.023.

    Article  Google Scholar 

  9. Domenichini, F., and G. Pedrizzetti. Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape. Comput. Methods Biomech. Biomed. Eng. 14:95–101, 2011. https://doi.org/10.1080/10255842.2010.485987.

    Article  Google Scholar 

  10. Enriquez-Sarano, M., C. W. Akins, and A. Vahanian. Mitral regurgitation. Lancet 373:1382–1394, 2009. https://doi.org/10.1016/S0140-6736(09)60692-9.

    Article  Google Scholar 

  11. Etebari, A., and P. P. Vlachos. Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp. Fluids 39:1040–1050, 2005. https://doi.org/10.1007/s00348-005-0037-1.

    Article  Google Scholar 

  12. Faludi, R., M. Szulik, J. D’hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, and J.-U. Voigt. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139:1501–1510, 2010. https://doi.org/10.1016/j.jtcvs.2009.07.060.

    Article  Google Scholar 

  13. Garcia, D., P. Lantelme, and E. Saloux. Introduction to Speckle Tracking in Cardiac Ultrasound Imaging. London: Institution of Engineering and Technology, 2018.

    Google Scholar 

  14. Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. USA 103:6305–6308, 2006. https://doi.org/10.1073/pnas.0600520103.

    Article  Google Scholar 

  15. Grinberg, D., P.-J. Cottinet, S. Thivolet, D. Audigier, J.-F. Capsal, M.-Q. Le, and J.-F. Obadia. Measuring chordae tension during transapical neochordae implantation: toward understanding objective consequences of mitral valve repair. J. Thorac. Cardiovasc. Surg. 2018. https://doi.org/10.1016/j.jtcvs.2018.10.029.

    Article  Google Scholar 

  16. Hayashi, T., K. Itatani, R. Inuzuka, N. Shimizu, T. Shindo, Y. Hirata, and K. Miyaji. Dissipative energy loss within the left ventricle detected by vector flow mapping in children: normal values and effects of age and heart rate. J. Cardiol. 66:403–410, 2015. https://doi.org/10.1016/j.jjcc.2014.12.012.

    Article  Google Scholar 

  17. Iwakura, K., H. Ito, S. Kawano, A. Okamura, T. Kurotobi, M. Date, K. Inoue, and K. Fujii. Comparison of orifice area by transthoracic three-dimensional doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am. J. Cardiol. 97:1630–1637, 2006. https://doi.org/10.1016/j.amjcard.2005.12.065.

    Article  Google Scholar 

  18. Khalafvand, S. S., E. Y.-K. Ng, L. Zhong, and T.-K. Hung. Three-dimensional diastolic blood flow in the left ventricle. J. Biomech. 50:71–76, 2017. https://doi.org/10.1016/j.jbiomech.2016.11.032.

    Article  Google Scholar 

  19. Khalafvand, S. S., L. Zhong, and E. Y. K. Ng. Three-dimensional CFD/MRI modeling reveals that ventricular surgical restoration improves ventricular function by modifying intraventricular blood flow. Int. J. Numer. Methods Biomed. Eng. 30:1044–1056, 2014. https://doi.org/10.1002/cnm.2643.

    Article  Google Scholar 

  20. Kilner, P. J., G.-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759, 2000. https://doi.org/10.1038/35008075.

    Article  Google Scholar 

  21. Kim, W. Y., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, and A. P. Yoganathan. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26:224–238, 1995. https://doi.org/10.1016/0735-1097(95)00141-l.

    Article  Google Scholar 

  22. Lancellotti, P., C. Tribouilloy, A. Hagendorff, B. A. Popescu, T. Edvardsen, L. A. Pierard, L. Badano, and J. L. Zamorano. On behalf of the Scientific Document Committee of the European Association of Cardiovascular Imaging: Thor Edvardsen, Oliver Bruder, Bernard Cosyns, Erwan Donal, Raluca Dulgheru, Maurizio Galderisi, Patrizio Lancellotti, Denisa Muraru, Koen Nieman, Rosa S, recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14:611–644, 2013. https://doi.org/10.1093/ehjci/jet105.

    Article  Google Scholar 

  23. Lin, B. A., A. S. Forouhar, N. M. Pahlevan, C. A. Anastassiou, P. A. Grayburn, J. D. Thomas, and M. Gharib. Color Doppler jet area overestimates regurgitant volume when multiple jets are present. J. Am. Soc. Echocardiogr. 23:993–1000, 2010. https://doi.org/10.1016/j.echo.2010.06.011.

    Article  Google Scholar 

  24. Mandinov, L., F. R. Eberli, C. Seiler, and O. M. Hess. Diastolic heart failure. Cardiovasc. Res. 45:813–825, 2000. https://doi.org/10.1016/s0008-6363(99)00399-5.

    Article  Google Scholar 

  25. Matsumura, Y., S. Fukuda, H. Tran, N. L. Greenberg, D. A. Agler, N. Wada, M. Toyono, J. D. Thomas, and T. Shiota. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: Difference between functional mitral regurgitation and prolapse regurgitation. Am. Heart J. 155:231–238, 2008. https://doi.org/10.1016/j.ahj.2007.09.002.

    Article  Google Scholar 

  26. Mohiaddin, R. H. Flow patterns in the dilated ischemic left ventricle studied by MR imaging with velocity vector mapping. J. Magn. Reson. Imaging 5:493–498, 1995. https://doi.org/10.1002/jmri.1880050503.

    Article  Google Scholar 

  27. Monceau, V., E. Camors, and D. Charlemagne. Physiopathologie du remodelage ventriculaire. MT Cardiol. 2:273–279, 2006.

    Google Scholar 

  28. Muñoz, D. R., J. L. M. Mur, C. Fernández-Golfín, D. C. B. Filho, A. G. Gómez, S. F. Santos, C. L. Rivera, L. M. R. Díaz, E. C. Rojo, and J. L. Z. Gómez. Left ventricular vortices as observed by vector flow mapping: main determinants and their relation to left ventricular filling. Echocardiography 32:96–105, 2015. https://doi.org/10.1111/echo.12584.

    Article  Google Scholar 

  29. Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, L. A. Fleisher, H. Jneid, M. J. Mack, C. J. McLeod, P. T. O’Gara, V. H. Rigolin, T. M. Sundt, and A. Thompson. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017. https://doi.org/10.1161/CIR.0000000000000503.

    Article  Google Scholar 

  30. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006. https://doi.org/10.1016/S0140-6736(06)69208-8.

    Article  Google Scholar 

  31. Okafor, I., V. Raghav, J. F. Condado, P. A. Midha, G. Kumar, and A. P. Yoganathan. Aortic regurgitation generates a kinematic obstruction which hinders left ventricular filling. Ann. Biomed. Eng. 45:1305–1314, 2017. https://doi.org/10.1007/s10439-017-1790-z.

    Article  Google Scholar 

  32. Papolla, C., J. Adda, A. Rique, G. Habib, and R. Rieu. In vitro quantification of mitral regurgitation of complex geometry by the modified proximal isovelocity surface area method. J. Am. Soc. Echocardiogr. 2020. https://doi.org/10.1016/j.echo.2020.03.008.

    Article  Google Scholar 

  33. Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005. https://doi.org/10.1103/PhysRevLett.95.108101.

    Article  Google Scholar 

  34. Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–773, 2010. https://doi.org/10.1007/s10439-010-9928-2.

    Article  Google Scholar 

  35. Raffel, M., C. E. Willert, S. Wereley, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide (2nd ed.). Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-72308-0.

    Book  Google Scholar 

  36. Saaid, H., J. Voorneveld, C. Schinkel, J. Westenberg, F. Gijsen, P. Segers, P. Verdonck, N. de Jong, J. G. Bosch, S. Kenjeres, and T. Claessens. Tomographic PIV in a model of the left ventricle: 3D flow past biological and mechanical heart valves. J. Biomech. 90:40–49, 2019. https://doi.org/10.1016/j.jbiomech.2019.04.024.

    Article  Google Scholar 

  37. Stugaard, M., H. Koriyama, K. Katsuki, K. Masuda, T. Asanuma, Y. Takeda, Y. Sakata, K. Itatani, and S. Nakatani. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study. Eur. Heart J. Cardiovasc. Imaging 16:723–730, 2015. https://doi.org/10.1093/ehjci/jev035.

    Article  Google Scholar 

  38. Thomas, L., E. Foster, and N. B. Schiller. Peak mitral inflow velocity predicts mitral regurgitation severity. J. Am. Coll. Cardiol. 31:174–179, 1998. https://doi.org/10.1016/S0735-1097(97)00454-3.

    Article  Google Scholar 

  39. Vasan Ramachandran, S., and D. Levy. Defining diastolic heart failure. Circulation 101:2118–2121, 2000. https://doi.org/10.1161/01.CIR.101.17.2118.

    Article  Google Scholar 

  40. Yuko, Soyama, Kagiyama Nobuyuki, Vader Justin, Sugahara Masataka, and Gorcsan John. Abstract 14376: The impact of mitral regurgitation on left ventricular energy loss by vector flow mapping in patients with heart failure. Circulation 138:A14376–A14376, 2018. https://doi.org/10.1161/circ.138.suppl_1.14376.

    Article  Google Scholar 

  41. Zoghbi, W. A., D. Adams, R. O. Bonow, M. Enriquez-Sarano, E. Foster, P. A. Grayburn, R. T. Hahn, Y. Han, J. Hung, R. M. Lang, S. H. Little, D. J. Shah, S. Shernan, P. Thavendiranathan, J. D. Thomas, and N. J. Weissman. Recommendations for noninvasive evaluation of native valvular regurgitation. J. Am. Soc. Echocardiogr. 30:303–371, 2017. https://doi.org/10.1016/j.echo.2017.01.007.

    Article  Google Scholar 

  42. Zürcher, F., N. Brugger, S. E. Jahren, S. F. de Marchi, and C. Seiler. Quantification of multiple mitral regurgitant jets: an in vitro validation study comparing two- and three-dimensional proximal isovelocity surface area methods. J. Am. Soc. Echocardiogr. 30:511–521, 2017. https://doi.org/10.1016/j.echo.2016.12.012.

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régis Rieu.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (STL 13770 kb)

Supplementary material 2 (AVI 3231 kb)

Supplementary material 3 (AVI 3034 kb)

Supplementary material 4 (AVI 2942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papolla, C., Darwish, A., Kadem, L. et al. Impact of Mitral Regurgitation on the Flow in a Model of a Left Ventricle. Cardiovasc Eng Tech 11, 708–718 (2020). https://doi.org/10.1007/s13239-020-00490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00490-y

Keywords

Navigation