Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model



The left atrium and left ventricle are the primary inflow cannulation sites for heart failure patients supported by rotary blood pumps (RBPs). Haemodynamic differences exist between inflow cannulation sites and have been well characterized at rest, yet the effect during exercise with the same centrifugal RBP has not been previously well established. The purpose of this study was to investigate the hemodynamic effect of inflow cannulation site during rest and exercise with the same centrifugal RBP.


In a numerical cardiorespiratory model, a simulated heart failure patient was supported by a HeartWare HVAD RBP in left atrial (LAC) and left ventricular cannulation (LVC). The RBP was operated at constant speed and sinusoidal co- and counter-pulse and was investigated in cardiovascular conditions of steady state rest and 80-watt bike graded exercise.


Cardiac output was 5.0 L min−1 during rest and greater than 6.9 L min−1 during exercise for all inflow cannulation sites and speed operating modes. However, during exercise, LAC demonstrated greater pressure-volume area and lower RBP flow (1.41, 1.37 and 1.37 J and 5.03, 5.12 and 5.03 L min−1 for constant speed and co- and counter-pulse respectively) when compared to LVC (pressure-volume area: 1.30, 1.27 and 1.32 J and RBP flow: 5.56, 5.71 and 5.59 L min−1 for constant speed and co- and counter-pulse respectively).


For a simulated heart failure patient intending to complete exercise, LVC seems to assure a better hemodynamic performance in terms of pressure-volume area unloading and increasing RBP flow.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1.

    Brassard, P., A. S. Jensen, N. Nordsborg, F. Gustafsson, J. E. Møller, C. Hassager, et al. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device constant versus increasing pump speed: a pilot study. Circ. Heart Fail. 4:554–560, 2011.

    Article  Google Scholar 

  2. 2.

    Burkhoff, D., M. S. Maurer, S. Joseph, J. G. Rogers, E. Y. Birati, J. E. Rame, et al. Left atrial decompression pump for severe heart failure with preserved ejection fraction. JACC Heart Fail. 3:275–282, 2015.

    Article  Google Scholar 

  3. 3.

    Chen, Z., S. K. Jena, G. A. Giridharan, M. A. Sobieski, S. C. Koenig, M. S. Slaughter, et al. Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med. Biol. Eng. Comput. 57:807–818, 2018.

    Article  Google Scholar 

  4. 4.

    Dunlay, S. M., T. G. Allison, and N. L. Pereira. Changes in cardiopulmonary exercise testing parameters following continuous flow left ventricular assist device implantation and heart transplantation. J. Card. Fail. 20:548–554, 2014.

    Article  Google Scholar 

  5. 5.

    Fresiello, L., R. Buys, S. Jacobs, Puyvelde J. Van, W. Droogne, F. Rega, et al. Exercise capacity in left ventricular assist device patients with full and partial support. Eur. J. Prev. Cardiol. 24:168–177, 2017.

    Article  Google Scholar 

  6. 6.

    Fresiello, L., A. W. Khir, Molfetta A. Di, and M. Kozarski. Effects of intra-aortic balloon pump timing on baroreflex activities in a closed-loop cardiovascular hybrid model. Artif. Organs. 37:237–247, 2013.

    Article  Google Scholar 

  7. 7.

    Fresiello, L., B. Meyns, Molfetta A. Di, G. Ferrari, and R. Hester. A Model of the cardiorespiratory response to aerobic exercise in healthy and heart failure conditions. Front. Physiol. 7:1–17, 2016.

    Article  Google Scholar 

  8. 8.

    Fresiello, L., F. Rademakers, P. Claus, G. Ferrari, Molfetta A. Di, and B. Meyns. Exercise physiology with a left ventricular assist device: analysis of heart-pump interaction with a computational simulator. PLoS ONE. 12:1–17, 2017.

    Article  Google Scholar 

  9. 9.

    Graefe, R., A. Henseler, R. Körfer, B. Meyns, and L. Fresiello. Influence of left ventricular assist device pressure-flow characteristic on exercise physiology: assessment with a verified numerical model. Int. J. Artif. Organs. 42(9):490–499, 2019.

    Article  Google Scholar 

  10. 10.

    Granegger, M., H. Ober, D. Zimpfer, H. Schima, and F. Moscato. Daily life activity in patients with left ventricular assist devices. Int. Heart J. 39:22–27, 2016.

    Google Scholar 

  11. 11.

    Gregory, S. D., M. C. Stevens, E. L. Wu, J. P. Pauls, M. Kleinheyer, and J. F. Fraser. Mitral valve regurgitation with a rotary left ventricular assist device: the haemodynamic effect of inlet cannulation site and speed modulation. Ann. Biomed. Eng. 44:2674–2682, 2016.

    Article  Google Scholar 

  12. 12.

    Gross, C., F. Moscato, T. Schlöglhofer, M. Maw, B. Meyns, C. Marko, et al. LVAD speed increase during exercise, which patients would benefit the most? A simulation study. Artif. Organs. 42:490–499, 2019.

    Article  Google Scholar 

  13. 13.

    Jacquet, L., O. Vancaenegem, A. Pasquet, P. Matte, A. Poncelet, J. Price, et al. Exercise capacity in patients supported with rotary blood pumps is improved by a spontaneous increase of pump flow at constant pump speed and by a rise in native cardiac output. Artif. Organs. 35:682–690, 2011.

    Article  Google Scholar 

  14. 14.

    Jakovljevic, D. G., R. S. George, D. Nunan, G. Donovan, R. S. Bougard, M. H. Yacoub, et al. The impact of acute reduction of continuous-flow left ventricular assist device support on cardiac and exercise performance. Heart. 96:1390–1395, 2010.

    Article  Google Scholar 

  15. 15.

    Jung, M. H., and F. Gustafsson. Exercise in heart failure patients supported with a left ventricular assist device. J. Heart Lung Transplant. 34:489–496, 2015.

    Article  Google Scholar 

  16. 16.

    Jung, M. H., P. B. Hansen, K. Sander, P. S. Olsen, K. Rossing, S. Boesgaard, et al. Effect of increasing pump speed during exercise improves peak oxygen consumption in heart failure patients supported with continuous-flow left ventricular assist device-a double-blind randomized study. Eur. J. Heart Fail. 16:403–408, 2014.

    Article  Google Scholar 

  17. 17.

    Kerrigan, D. J., C. T. Williams, J. K. Ehrman, K. Bronsteen, M. A. Saval, J. R. Schairer, et al. Muscular strength and cardiorespiratory fitness are associated with health status in patients with recently implanted continuous-flow LVADs. J. Cardiopulm. Rehabil. Prev. 33:396–400, 2013.

    Article  Google Scholar 

  18. 18.

    Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 34:1495–1504, 2015.

    Article  Google Scholar 

  19. 19.

    Korakianitis, T., and Y. Shi. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med. Eng. Phys. 28:613–628, 2006.

    Article  Google Scholar 

  20. 20.

    Lund, L. H., L. B. Edwards, A. Y. Kucheryavaya, C. Benden, J. D. Christie, A. I. Dipchand, et al. The registry of the International Society for Heart and Lung Transplantation: 26th official adult heart transplant report—2014. J. Heart Lung Transplant. 33:996–1008, 2014.

    Article  Google Scholar 

  21. 21.

    Martina, J., N. Jonge, M. Rutten, J. H. Kirkels, C. Klöpping, B. Rodermans, et al. Exercise hemodynamics during extended continuous flow left ventricular assist device support: the response of systemic cardiovascular parameters and pump performance. Artif. Organs. 37:754–762, 2013.

    Article  Google Scholar 

  22. 22.

    Mehra, M. R., Y. Naka, N. Uriel, D. J. Goldstein, J. C. Cleveland, P. C. Colombo, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N. Engl. J. Med. 376(5):440–550, 2017.

    Article  Google Scholar 

  23. 23.

    Morley, D., K. Litwak, P. Ferber, P. Spence, R. Dowling, B. Meyns, et al. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data. J. Cardiovasc. Surg. (Torino). 133:21–28, 2007.

    Google Scholar 

  24. 24.

    Muthiah, K., D. T. Humphreys, D. Robson, K. Dhital, P. Spratt, P. Jansz, et al. Longitudinal structural, functional, and cellular myocardial alterations with chronic centrifugal continuous- fl ow left ventricular assist device support. J. Heart Lung Transplant. 36:1–10, 2016.

    Google Scholar 

  25. 25.

    Muthiah, K., D. Robson, R. Prichard, R. Walker, S. Gupta, A. M. Keogh, et al. Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices. J. Heart Lung Transplant. 34:522–529, 2015.

    Article  Google Scholar 

  26. 26.

    Pirbodaghi, T., S. Axiak, A. Weber, T. Gempp, and S. Vandenberghe. Pulsatile control of rotary blood pumps: does the modulation waveform matter? J. Thorac. Cardiovasc. Surg. 144:970–977, 2012.

    Article  Google Scholar 

  27. 27.

    Platts, D. Echocardiographic evaluation of ventricular assist devices. In: Venttricular Assist Devices, edited by J. Shuhaiber. Shanghai: InTech, 2011, pp. 27–46.

    Google Scholar 

  28. 28.

    Rogers, J. G., K. D. Aaronson, A. J. Boyle, S. D. Russell, C. A. Milano, F. D. Pagani, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J. Am. Coll. Cardiol. 55:1826–1834, 2010.

    Article  Google Scholar 

  29. 29.

    Sagawa, K. The end-systolic pressure-volume relation of the ventricle : definition, modifications and clinical use. Circulation 63:1223–1227, 1981.

    Article  Google Scholar 

  30. 30.

    Soucy, K. G., S. C. Koenig, G. A. Giridharan, M. A. Sobieski, and M. S. Slaughter. Defining pulsatility during continuous-flow ventricular assist device support. J. Heart Lung Transplant. 32:581–587, 2013.

    Article  Google Scholar 

  31. 31.

    Suga, H. Ventricular energetics. Physiol. Rev. 70:247–270, 1990.

    Article  Google Scholar 

  32. 32.

    Timms, D., S. Gregory, P. Hsu, B. Thomson, M. Pearcy, K. Mcneil, et al. Atrial versus ventricular cannulation for a rotary ventricular assist device. Artif. Organs. 34(9):714–720, 2010.

    Article  Google Scholar 

  33. 33.

    Vandenberghe, S., T. Nishida, P. Segers, B. Meyns, and P. Verdonck. The impact of pump speed and inlet cannulation site on left ventricular unloading with a rotary blood pump. Artif. Organs 28:660–667, 2004.

    Article  Google Scholar 

  34. 34.

    Vollkron, M., H. Schima, L. Huber, R. Benkowski, G. Morello, and G. Wieselthaler. Development of a reliable automatic speed control system for rotary blood pumps. J. Heart Lung Transplant. 24:1878–1885, 2005.

    Article  Google Scholar 

  35. 35.

    Yamakawa, M., S. Kyo, S. Yamakawa, M. Ono, K. Kinugawa, and T. Nishimura. Destination therapy: the new gold standard treatment for heart failure patients with left ventricular assist devices. Gen. Thorac. Cardiovasc. Surg. 61:111–117, 2013.

    Article  Google Scholar 

Download references


The authors would like to recognize the financial assistance provided by The Prince Charles Hospital Foundation (TM2017-04 and EMR2017-01), the National health and Medical Research Council Centre for Research Excellence (APP1079421), The University of Queensland and Griffith University. ELW acknowledges his Advance Queensland PhD scholarship and Australian Government Scholarship stipend. JFF acknowledges his fellowship support from the Office of Health and Medical Research, Queensland health. SDG was supported by a Future Leader Fellowship (102062) from the National Heart Foundation of Australia. LF was supported by KU Leuven C1 Project C1I-18-00576 and by the Frans Van de Werf Scholarship.

Author information



Corresponding author

Correspondence to Eric L. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Zhongjun Wu oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, E.L., Fresiello, L., Kleinhyer, M. et al. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model. Cardiovasc Eng Tech 11, 350–361 (2020). https://doi.org/10.1007/s13239-020-00471-1

Download citation


  • Rotary blood pump
  • Left ventricular assist device
  • Inflow cannulation
  • Speed modulation
  • Pulsing
  • Exercise
  • In silico