Skip to main content
Log in

Haemodynamics Study of Tapered Stents Intervention to Tapered Arteries

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

In-stent restenosis (ISR) is related to local haemodynamics in the arteries after stent intervention. However, the haemodynamics of stents implanted into tapered vessels is rarely studied and remains unclear. This study aimed to study the haemodynamic performance of a stent in a tapered artery to reveal the haemodynamic differences between tapered and cylindrical stents after stent implantation and guide the stent selection for the treatment of coronary artery stenosis.

Methods

Cylindrical and tapered stents were implanted into the tapered arteries. A model of a cylindrical stent implanted into a cylindrical artery was established as the contrast model. Using the finite element method, the flow velocity and wall shear stress distribution of the three models were compared.

Results

At t1, t2, t3 and t4, the flow rate of the tapered artery with tapered stents (TT) after the implantation increased by 8.59, 3.80, 12.81 and 3.66%, respectively. In addition, the wall shear stress in the tapered arteries of TT was 23.48, 36.67, 13.00 and 8.06% higher than that of the tapered arteries with cylindrical stents (TC).

Conclusions

The implantation of a tapered stent in the tapered artery can effectively improve intravascular haemodynamics. The tapered stent allows the tapered artery to obtain better haemodynamics and reduces the probability of ISR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local haemodynamicss in stented arteries. J. Biomech. 41:1053–1061, 2008.

    Article  Google Scholar 

  2. Beier, S., J. Ormiston, M. Webster, J. Cater, S. Norris, P. Medrano-Gracia, et al. Haemodynamicss in idealized stented coronary arteries: important stent design considerations. Ann. Biomed. Eng. 44:315–329, 2015.

    Article  Google Scholar 

  3. Beier, S., J. Ormiston, M. Webster, J. Cater, S. Norris, P. Medrano-Gracia, et al. Impact of bifurcation angle and other anatomical characteristics on blood flow: a computational study of non-stented and stented coronary arteries. J. Biomech. 49:1570–1582, 2016.

    Article  Google Scholar 

  4. Beier, S., J. Ormiston, M. Webster, J. Cater, S. Norris, P. Medrano-Gracia, et al. Haemodynamicss in idealized stented coronary arteries: important stent design considerations. Ann. Biomed. Eng. 44:315–329, 2016.

    Article  Google Scholar 

  5. Benard, N., D. Coisne, E. Donal, and R. Perrault. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. J. Biomech. 36:991–998, 2003.

    Article  Google Scholar 

  6. Chen, H. Y., J. Hermiller, A. K. Sinha, M. Sturek, L. Zhu, and G. S. Kassab. Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. J. Appl. Physiol. 106:1686–1691, 2009.

    Article  Google Scholar 

  7. Chiastra, C., F. Migliavacca, M. A. Martínez, and M. Malve. On the necessity of modelling fluid–structure interaction for stented coronary arteries. J. Mech. Behav. Biomed. 34:217–230, 2014.

    Article  Google Scholar 

  8. Chiastra, C., S. Morlacchi, D. Gallo, U. Morbiducci, R. Cárdenes, I. Larrabide, et al. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J. R. Soc. Interface 10(84):20130193, 2013.

    Article  Google Scholar 

  9. Davies, P. F. Haemodynamics shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Card. 6:16–26, 2009.

    Article  Google Scholar 

  10. Fu, W., Z. Gu, X. Meng, B. Chu, and A. Qiao. Numerical simulation of haemodynamicss in stented internal carotid aneurysm based on patient-specific model. J. Biomech. 43:1337–1342, 2010.

    Article  Google Scholar 

  11. Gu, L., S. Zhao, and S. R. Froemming. Arterial wall mechanics and clinical implications after coronary stenting: comparisons of three stent designs. Int. J. Appl. Mech. 4:1250013, 2012.

    Article  Google Scholar 

  12. Haghighi, A. R., M. S. Asl, and M. Kiyasatfar. Mathematical modeling of unsteady blood flow through elastic tapered artery with overlapping stenosis. J. Braz. Soc. Mech. Sci. 37:571–578, 2015.

    Article  Google Scholar 

  13. Hsiao, H. M., Y. H. Chiu, K. H. Lee, and C. H. Lin. Computational modeling of effects of intravascular stent design on key mechanical and haemodynamics behavior. Comput. Aided Des. 44:757–765, 2012.

    Article  Google Scholar 

  14. Imani, M., A. M. Goudarzi, D. D. Ganji, and A. L. Aghili. The comprehensive finite element model for stenting: the influence of stent design on the outcome after coronary stent placemen. J. Theor. Appl. Mech. 51:639–648, 2013.

    Google Scholar 

  15. Inoue, T., K. Croce, T. Morooka, M. Sakuma, K. Node, and D. I. Simon. Vascular inflammation and repair: implications for reendothelialization, restenosis, and stent thrombosis. J. Mech. Behav. Biomed. 4:1057–1066, 2011.

    Article  Google Scholar 

  16. Kastrati, A., W. Koch, P. B. Berger, J. Mehilli, K. Stephenson, F. Neumann, et al. Protective role against restenosis from an interleukin-1 receptor antagonist gene polymorphism in patients treated with coronary stenting. J. Am. Coll. Cardiol. 36:2168–2173, 2000.

    Article  Google Scholar 

  17. Koskinas, K. C., Y. S. Chatzizisis, A. P. Antoniadis, and G. D. Giannoglou. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59(15):1337–1349, 2012.

    Article  Google Scholar 

  18. Liu, M., A. Sun, and X. Deng. Haemodynamics performance within crossed stent grafts: computational and experimental study on the effect of cross position and angle. Biomed. Eng. OnLine. 17:85, 2018.

    Article  Google Scholar 

  19. Liu, G. T., X. J. Wang, B. Q. Ai, and L. G. Liu. Numerical study of pulsating flow through a tapered artery with stenosis. Chin. J. Phys. 42:401–409, 2004.

    Google Scholar 

  20. Mekheimer, K. S., and M. A. El Kot. Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis. Appl. Math. Model. 36(11):5393–5407, 2012.

    Article  MathSciNet  Google Scholar 

  21. Mitra, A. K., and D. K. Agrawal. In stent restenosis: bane of the stent era. J. Clin. Pathol. 59:232–239, 2006.

    Article  Google Scholar 

  22. Moore, J. E., and J. L. Berry. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng. 30:498–508, 2002.

    Article  Google Scholar 

  23. Pant, S., N. W. Bressloff, A. I. Forrester, and N. Curzen. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38:1893–1907, 2010.

    Article  Google Scholar 

  24. Qiao, A., and Z. Zhang. Numerical simulation of vertebral artery stenosis treated with different stents. J. Biomech. 136:041007, 2014.

    Article  Google Scholar 

  25. Rikhtegar, F., C. Wyss, K. S. Stok, D. Poulikakos, R. Müller, and V. Kurtcuoglu. Haemodynamicss in coronary arteries with overlapping stents. J. Biomech. 47:505–511, 2014.

    Article  Google Scholar 

  26. Seo, T., L. G. Schachter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.

    Article  Google Scholar 

  27. Shen, X., Y. Q. Deng, Z. M. Xie, and S. Ji. Assessment of coronary stent deployment in tapered arteries: impact of artery tapering. J. Mech. Med. Biol. 16:1640015, 2016.

    Article  Google Scholar 

  28. Shen, X., S. Ji, Y. Q. Deng, and Z. M. Xie. Effect of different expansion strategies on coronary stent deployment in a tapered artery. Technol. Health Care 25:21–28, 2017.

    Article  Google Scholar 

  29. Shen, X., Z. M. Xie, Y. Y. Sun, and B. B. Wu. Balloon-expandable stents expansion in tapered vessels and their interactions. J. Mech. Med. Biol. 14:1440013, 2014.

    Article  Google Scholar 

  30. Timmins, L. H., C. A. Meyer, M. R. Moreno, et al. Mechanical modeling of stents deployed in tapered arteries. Ann. Biomed. Eng. 36(12):2042–2050, 2008.

    Article  Google Scholar 

  31. Valero, E., L. Consuegra-Sánchez, G. Minana, S. García-Blas, S. Ri, P. Moyano, et al. Initial experience with the novel BioMime 60 mm-long sirolimus-eluting tapered stent system in long coronary lesions. EuroIntervention. 13:1591–1594, 2017.

    Article  Google Scholar 

  32. Van der Heiden, K., F. J. Gijsen, A. Narracott, S. Hsiao, I. Halliday, J. Gunn, et al. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc. Res. 99:269–275, 2013.

    Article  Google Scholar 

  33. Wang, J., X. Jin, Y. Huang, X. Ran, D. Luo, D. Yang, et al. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen. Biomater. 5:177–187, 2018.

    Article  Google Scholar 

  34. Xue, Y., X. Liu, A. Sun, P. Zhang, Y. Fan, and X. Deng. Haemodynamics performance of a new punched stent strut: a numerical study. Artif. Org. 40:669–677, 2016.

    Article  Google Scholar 

  35. Zaman, A., N. Ali, M. Sajid, and T. Hayat. Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery. AIP Adv. 5:037129, 2015.

    Article  Google Scholar 

  36. Zhou, R. H., T. S. Lee, T. C. Tsou, F. Rannou, Y. S. Li, S. Chien, et al. Stent implantation activates Akt in the vessel wall: role of mechanical stretch in vascular smooth muscle cells. Arteriosclr. Thromb. Vasc. Biol. 23:2015–2020, 2003.

    Article  Google Scholar 

  37. Zivelonghi, C., J. P. van Kuijk, V. Nijenhuis, E. Poletti, M. J. Suttorp, J. A. S. van der Heyden, et al. First report of the use of long-tapered sirolimus-eluting coronary stent for the treatment of chronic total occlusions with the hybrid algorithm. Catheter Cardiovasc. Interv. 92:E299–E307, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (51305171), Natural Science Foundation of Jiangsu Province (BK20130525), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (13KJB460006), China Postdoctoral Science Foundation (2011M500858), Foundation of Jiangsu University (10JDG123) and Project of Jiangsu University for training young backbone teachers.

Conflict of interest

Xiang Shen, Jiabao Jiang, Yongquan Deng, Hongfei Zhu, and Kaikai Lu declare that they have no conflict of interest.

Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Shen.

Additional information

Associate Editor Hwa Liang Leo oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Jiang, J., Deng, Y. et al. Haemodynamics Study of Tapered Stents Intervention to Tapered Arteries. Cardiovasc Eng Tech 10, 583–589 (2019). https://doi.org/10.1007/s13239-019-00437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00437-y

Keywords

Navigation