Image-Based Flow Simulations of Pre- and Post-left Atrial Appendage Closure in the Left Atrium

Abstract

Purpose

For patients with atrial fibrillation, the left atrial appendage (LAA) is often the site of thrombus formation due to low atrial ejection fraction that triggers strokes and other thromboembolic events. Recently introduced percutaneous LAA occlusion procedure is known to reduce LAA-induced strokes. Despite having the procedure, there are still 11% of the patients who continue to suffer from future strokes or transient ischemic attacks, not accounting for the procedural related complications. The high failure rate is largely due to the variabilities in LAA’s shape, size, and contractility which may result in ineffectiveness of this procedure. To correctly identify the candidates and evaluate the effectiveness of the procedure, we rely on patient-specific CT scans which provides the exact LA and LAA geometries and predictive hemodynamic analysis to assist in evaluating quantitative flow parameters pre- and post-LAA occlusion procedures. Hemodynamic parameters are critical to predict adverse hemodynamic flow patterns in LAA as well as the effectiveness of LAA closure in individual patient. The aim of this paper is to establish an image-based patient-specific computational fluid dynamic (CFD) simulation framework specific to the prediction of treatment outcomes of LAA closure with atrial fibrillation. This framework utilizes automated LA/LAA image segmentation which yields significant reduction in image processing. One set of patient data with successful procedure outcome is used to illustrate the potential of the proposed framework.

Methods

The proposed LAA occlusion simulation framework is composed of several components: (1) a novel image segmentation procedure, which is fully-automated to identify LA/LAA geometries from CT images, (2) a finite-element mesh generation procedure which transforms the surface geometry into a 3-D volume mesh and properly identified boundary planes, (3) performing CFD simulations with atrial fibrillation flow boundary conditions, and (4) analyzing flow characteristics (velocity, flow patterns, streamlines, vortices) within the LA for before and after LAA closure.

Results

Based on the LA/LAA segmentation of a 65 year old female patient with chronic atrial fibrillation, a CFD analysis was pursued to examine flow characteristics upon LAA closure. The results showed that the flow velocity magnitudes were significantly reduced by a maximum factor of 2.21, flow streamlines were greatly stabilized, and mitral outflow appeared to be more organized. Vortices were dramatically reduced in size, number, intensity, as well as duration. During diastole, the peak vortex diameter was reduced from 2.8 to 1.5 cm, while the vortex duration was reduced from 0.210 to 0.135 s. These flow characteristics all indicated a reduced risk in future thrombus formation and strokes based on the established relationship between flow and thrombus formation. For the patient case under study, the effectiveness of the procedure is predicted and found to be consistent with the actual procedural outcome.

Conclusions

This framework successfully predicted patient-specific outcome of a LAA closure procedure for one patient with atrial fibrillation. It can be further developed into a useful tool for pre-procedural planning and candidate selection. More patient data are necessary for further validation studies.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

References

  1. 1.

    3D-Doctor Brochure. Abel software Corp. 2019.

  2. 2.

    ANSYS, Inc. ANSYS Academic Research, Release 18, Fluent, 2017.

  3. 3.

    Adams, R. and L. Bischof. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6):641–647, 1994.

    Article  Google Scholar 

  4. 4.

    Al-Saady, N. M., O. A. Obel, and A. J. Camm. Left atrial appendage: structure, function, and role in thromboembolism. Heart 82(5):547–554, 1999.

    Article  Google Scholar 

  5. 5.

    Alliez, P., D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational tetrahedral meshing. ACM Trans. Graph. 24(3):617–625, July 2005.

    Article  Google Scholar 

  6. 6.

    Backer, O. D., S. Arnous, N. Ihlemann, N. Vejlstrup, E. Jørgensen, S. Pehrson, T. D. W. Krieger, P. Meier, L. Søndergaard, and O. W. Franzen. Percutaneous left atrial appendage occlusion for stroke prevention in atrial fibrillation: an update. Open Heart 1(1):e000020, 2014.

  7. 7.

    Bansal, M. and R. R Kasliwal. Echocardiography for left atrial appendage structure and function. Indian Heart J. 64(5):469–475, 2012.

    Article  Google Scholar 

  8. 8.

    Biase, L. D., J. D. Burkhardt, P. Mohanty, J. Sanchez, S. Mohanty, R. Horton, G. J. Gallinghouse, S. M. Bailey, J. D. Zagrodzky, P. Santangeli, S. Hao, R. Hongo, S. Beheiry, S. Themistoclakis, A. Bonso, A. Rossillo, A. Corrado, A. Raviele, A. Al-Ahmad, P. Wang, J. E. Cummings, R. A. Schweikert, G. Pelargonio, A. D. Russo, M. Casella, P. Santarelli, W. R. Lewis, and A. Natale. Left atrial appendage. Circulation 122(2):109–118, 2010.

    Article  Google Scholar 

  9. 9.

    Blackshear, J. L. and J. A. Odell. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann. Thorac. Surg. 61(2):755–759, 1996.

    Article  Google Scholar 

  10. 10.

    Bosi, G. M., A. Cook, R. Rai, L. J. Menezes, S. Schievano, R. Torii, and G. B. Burriesci. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front. Cardiovasc. Med. 5:34, 2018.

    Article  Google Scholar 

  11. 11.

    Caracciolo, G., H. Abe, J. Narula, P. P. Sengupta, G. Pedrizzetti, A. Kheradvar, and B. K. Khandheria. Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. Eur. Heart J. 14(11):1049–1060, 04 2013.

    Google Scholar 

  12. 12.

    Chnafa, C., S. Mendez, and F. Nicoud. Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94:173–187, 2014.

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia. Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, 2008, pp. 129–136.

  14. 14.

    Cimino, S., G. Pedrizzetti, G. Tonti, E. Canali, V. Petronilli, L. De Luca, C. Iacoboni, and L. Agati. In vivo analysis of intraventricular fluid dynamics in healthy hearts. Eur. J. Mech. 35:40–46, 2012.

    Article  Google Scholar 

  15. 15.

    Ernst, G., C. Stöllberger, F. Abzieher, W. Veit-Dirscherl, E. Bonner, B. Bibus, B. Schneider, and J. Slany. Morphology of the left atrial appendage. Anat. Rec. 242(4):553–561, 1995.

    Article  Google Scholar 

  16. 16.

    Fyrenius, A., L. Wigström, T. Ebbers, M. Karlsson, J. Engvall, and A. F. Bolger. Three dimensional flow in the human left atrium. Heart 86(4):448–455, 2001.

    Article  Google Scholar 

  17. 17.

    García-Fernández, M. A., E. G. Torrecilla, D. S. Román, J. Azevedo, H. Bueno, M. M. Moreno, and J. L. Delcán. Left atrial appendage doppler flow patterns: implications on thrombus formation. Am. Heart J. 124(4):955–961, 1992.

    Article  Google Scholar 

  18. 18.

    García-Isla, G., A. L. Olivares, E. Silva, M. Nuñez-Garcia, C. Butakoff, D. Sanchez-Quintana, H. G. Morales, X. Freixa, J. Noailly, T. De Potter, et al. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int. J. Numer. Methods Biomed. Eng. 34(8):e3100, 2018.

  19. 19.

    Hoppe, H. New quadric metric for simplifiying meshes with appearance attributes. In: Proceedings of the Conference on Visualization’99: Celebrating Ten Years, 1999, pp. 59–66.

  20. 20.

    Hwang, S. H., S. Y. Roh, J. Shim, J. Choi, Y.-H. Kim, and Y.-W. Oh. Atrial fibrillation: relationship between left atrial pressure and left atrial appendage emptying determined with velocity-encoded cardiac MR imaging. Radiology 284(2):381–389, 2017.

    Article  Google Scholar 

  21. 21.

    Jeon, B., Y. Hong, D. Han, Y. Jang, S. Jung, Y. Hong, S. Ha, H. Shim, and H.-J. Chang. Maximum a posteriori estimation method for aorta localization and coronary seed identification. Pattern Recogn. 68:222–232, 2017.

    Article  Google Scholar 

  22. 22.

    Kanderian, A. S., A. M. Gillinov, G. B. Pettersson, E. Blackstone, and A. L. Klein. Success of surgical left atrial appendage closure. J. Am. Coll. Cardiol. 52(11):924–929, 2008.

    Article  Google Scholar 

  23. 23.

    Kazhdan, M., and H. Hoppe. Screened poisson surface reconstruction. ACM Trans. Graph. 32(3):29, 2013.

    MATH  Google Scholar 

  24. 24.

    Keren, G., J. Sherez, R. Megidish, B. Levitt, and S. Laniado. Pulmonary venous flow pattern-its relationship to cardiac dynamics. A pulsed doppler echocardiographic study. Circulation 71(6):1105–1112, 1985.

    Article  Google Scholar 

  25. 25.

    Kikinis, R., S. D. Pieper, and K. G. Vosburgh. 3d slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative Imaging and Image-Guided Therapy. Berlin: Springer, pp. 277–289, 2014.

  26. 26.

    Kim, I.-C., G.-R. Hong, G. Pedrizzetti, C. Y. Shim, S.-M. Kang, and N. Chung. Usefulness of left ventricular vortex flow analysis for predicting clinical outcomes in patients with chronic heart failure: a quantitative vorticity imaging study using contrast echocardiography. Ultrasound Med. Biol. 44(9):1951–1959, 2018.

    Article  Google Scholar 

  27. 27.

    Korhonen, M., A. Muuronen, O. Arponen, P. Mustonen, M. Hedman, P. Jäkälä, R. Vanninen, and M. Taina. Left atrial appendage morphology in patients with suspected cardiogenic stroke without known atrial fibrillation. PLoS ONE 10(3):e0118822, 2015.

    Article  Google Scholar 

  28. 28.

    Kovács, T., P. Cattin, H. Alkadhi, S. Wildermuth, and G. Székely. Automatic segmentation of the vessel lumen from 3d cta images of aortic dissection. In: Bildverarbeitung für die Medizin. Berlin: Springer, 2006, pp. 161–165.

  29. 29.

    Laukkanen, J. A., S. Kurl, J. Eränen, M. Huttunen, and J. T. Salonen. Left atrium size and the risk of cardiovascular death in middle-aged men. Arch. Intern. Med. 165(15):1788–1793, 2005.

    Article  Google Scholar 

  30. 30.

    Long, B., J. Robertson, A. Koyfman, K. Maliel, and J. R. Warix. Emergency medicine considerations in atrial fibrillation. Am. J. Emerg. Med. 36(6):1070–1078, 2018.

  31. 31.

    Malchano, Z. J., P. Neuzil, R. C. Cury, G. Holmvang, J. Wwichet, E. J. Schmidt, J. N. Ruskin, and V. Y. Reddy. Integration of cardiac CT/MR imaging with three-dimensional electroanatomical mapping to guide catheter manipulation in the left atrium: implications for catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 17(11):1221–1229, 2006.

    Article  Google Scholar 

  32. 32.

    Masci, A., M. Alessandrini, L. Dede, D. Forti, F. Menghini, C. Tomasi, A. Quarteroni, C. Corsi, and Ecole Polytecnique Fédérale de Lausanne EPFL CMCS. Development of a computational fluid dynamics model of the left atrium in atrial fibrillation on a patient specific basis. Computing 44:1, 2017.

    Google Scholar 

  33. 33.

    Masci, A., D. Forti, M. Alessandrini, F. Menghini, L. Dede, C. Corsi, A. Quarteroni, and C. Tomasi. Development of a patient-specific computational fluid dynamics model of the LA in AF for stroke risk assessment. EP Europace 19(3):120–121, 2017.

    Article  Google Scholar 

  34. 34.

    Mimics. Materialise Inc. 2019.

  35. 35.

    Mittal, R., J. H. Seo, V. Vedula, Y. J. Choi, H. Liu, H. H. Huang, S. Jain, L. Younes, T. Abraham, and R. T. George. Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys. 305:1065–1082, 2016.

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Nishimura, R. A., M. .D Abel, L. K. Hatle, and A. J. Tajik. Relation of pulmonary vein to mitral flow velocities by transesophageal doppler echocardiography. Effect of different loading conditions. Circulation 81(5):1488–1497, 1990.

    Article  Google Scholar 

  37. 37.

    Ostermayer, S. H., M. Reisman, P. H. Kramer, R. V. Matthews, W. A. Gray, P. C. Block, H. Omran, A. L. Bartorelli, P. D. Bella, C. Di Mario, C. Pappone, P. N. Casale, J. W. Moses, A. Poppas, D. O. Williams, B. Meier, A. Skanes, P. S. Teirstein, M. D. Lesh, T. Nakai, Y. Bayard, K. Billinger, T. Trepels, U. Krumsdorf, and H. Sievert. Percutaneous left atrial appendage transcatheter occlusion (plaato system) to prevent stroke in high-risk patients with non-rheumatic atrial fibrillation. J. Am. Coll. Cardiol. 46(1):9–14, 2005.

    Article  Google Scholar 

  38. 38.

    Otani, T., A. Al-Issa, A. Pourmorteza, E.R. McVeigh, S. Wada, and H. Ashikaga. A computational framework for personalized blood flow analysis in the human left atrium. Ann. Biomed. Eng. 44(11):3284–3294, 2016.

    Article  Google Scholar 

  39. 39.

    Pollick, C. and D. Taylor. Assessment of left atrial appendage function by transesophageal echocardiography. Implications for the development of thrombus. Circulation 84(1):223–231, 1991.

    Article  Google Scholar 

  40. 40.

    Pozzoli, M., O. Febo, A. Torbicki, R. Tramarin, G. Calsamiglia, F. Cobelli, G. Specchia, and J. R. T. C. Roelandt. Left atrial appendage dysfunction: a cause of thrombosis? Evidence by transesophageal echocardiography-doppler studies. J. Am. Soc. Echocardiogr. 4(5):435–441, 1991.

    Article  Google Scholar 

  41. 41.

    Price, M. J. V. Y. Reddy, M. Valderrábano, J. L. Halperin, D. N. Gibson, N. Gordon, K. C. Huber, and D. R. Holmes. Bleeding outcomes after left atrial appendage closure compared with long-term warfarin: a pooled, patient-level analysis of the watchman randomized trial experience. JACC Cardiovasc. Interv. 8(15):1925–1932, 2015.

    Article  Google Scholar 

  42. 42.

    Rajagopalan, B., C. D. Bertram, T. Stallard, and G. de J. Lee. Blood flow in pulmonary veins: III simultaneous measurements of their dimensions, intravascular pressure and flow. Cardiovasc. Res. 13(12):684–692, 1979.

    Article  Google Scholar 

  43. 43.

    Sampath, K., T. T. Harfi, R. T. George, and J. Katz. Optimized time-resolved echo particle image velocimetry–particle tracking velocimetry measurements elucidate blood flow in patients with left ventricular thrombus. J. Biomech. Eng. 140(4):041010, 2018.

    Article  Google Scholar 

  44. 44.

    Saygi, S., U. O. Turk, E. Alioglu, B. Kirilmaz, I. Tengiz, N. Tuzun, and E. Ercan. Left atrial appendage function in mitral stenosis: is it determined by cardiac rhythm? J. Heart Valve Dis. 20(4):417–424, 2011.

    Google Scholar 

  45. 45.

    Schaap, M., C. T. Metz, T. van Walsum, A. G van der Giessen, A. C. Weustink, N. R. Mollet, C. Bauer, H. Bogunović, C. Castro, X. Deng, et al. Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5):701–714, 2009.

    Article  Google Scholar 

  46. 46.

    Sengupta, P. P., G. Pedrizzetti, P. J. Kilner, A. Kheradvar, T. Ebbers, G. Tonti, A. G. Fraser, and J. Narula. Emerging trends in cv flow visualization. JACC Cardiovasc. Imaging 5(3):305–316, 2012.

    Article  Google Scholar 

  47. 47.

    Shrestha, N. K., F. L. Moreno, F. V. Narciso, L. Torres, and H. B. Calleja. Two-dimensional echocardiographic diagnosis of left-atrial thrombus in rheumatic heart disease. a clinicopathologic study. Circulation 67(2):341–347, 1983.

    Article  Google Scholar 

  48. 48.

    Smith, R. L., E. F. Blick, J. Coalson, and P. D. Stein. Thrombus production by turbulence. J. Appl. Physiol. 32(2):261–264, 1972.

    Article  Google Scholar 

  49. 49.

    Tabata, T., T. Oki, A. Iuchi, H. Yamada, K. Manabe, K. Fukuda, M. Abe, N. Fukuda, and S. Ito. Evaluation of left atrial appendage function by measurement of changes in flow velocity patterns after electrical cardioversion in patients with isolated atrial fibrillation. Am. J. Cardiol. 79(5):615–620, 1997.

    Article  Google Scholar 

  50. 50.

    Vigna C., A. Russo, V. De Rito, G. Perna, A. Villella, M. Testa, V. Sollazzo, R. Fanelli, and F. Loperfido. Frequency of left atrial thrombi by transesophageal echocardiography in idiopathic and in ischemic dilated cardiomyopathy. Am. J. Cardiol. 70(18):1500–1501, 1992.

    Article  Google Scholar 

  51. 51.

    Wang, Y. A. N., L. D. Biase, R.P. Horton, T. Nguyen, P. Morhanty, and A. Natale. Left atrial appendage studied by computed tomography to help planning for appendage closure device placement. J. Cardiovasc. Electrophysiol. 21(9):973–982, 2010.

    Article  Google Scholar 

  52. 52.

    Wyvill, G., C. McPheeters, and B. Wyvill. Data structure forsoft objects. Vis. Comput. 2(4):227–234, 1986.

    Article  Google Scholar 

  53. 53.

    Zhang, L. T. and M. Gay. Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models. J. Biomech. 41(11):2515–2523, 2008.

    Article  Google Scholar 

Download references

Funding

Author LTZ would like to acknowledge the support from NSFC Grants 11650410650 and 11550110185. Authors BJ, HP and HC are supported by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) (2012027176).

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

No human or animal studies were carried out by the authors for this article. The institutional review board approved this study and waived the requirement for informed consent due to its retrospective design.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucy T. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 952 kb)

Supplementary material 2 (MP4 966 kb)

Supplementary material 3 (MP4 903 kb)

Supplementary material 4 (MP4 968 kb)

Supplementary material 5 (MP4 975 kb)

Supplementary material 6 (MP4 793 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Jeon, B., Park, H. et al. Image-Based Flow Simulations of Pre- and Post-left Atrial Appendage Closure in the Left Atrium. Cardiovasc Eng Tech 10, 225–241 (2019). https://doi.org/10.1007/s13239-019-00412-7

Download citation

Keywords

  • Left atrial appendage
  • Computational fluid dynamics
  • Atrial fibrillation