Cardiovascular Engineering and Technology

, Volume 9, Issue 3, pp 503–513 | Cite as

Fabrication and Testing of Electrospun Polyurethane Blended with Chitosan Nanoparticles for Vascular Graft Applications

  • Ranjeeta Subramaniam
  • Mohan Prasath Mani
  • Saravana Kumar JaganathanEmail author


In this study, a small vascular graft based on polyurethane (PU) blended with chitosan (Ch) nanoparticles was fabricated using electrospinning technique. Initially, the chitosan nanoparticles were synthesized using ionic gelation method. UV–Vis spectrophotometer confirmed the presence of synthesized Ch nanoparticles by exhibiting absorption peak at 288 nm and the Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the existence of the chitosan. Further, the synthesized Ch nanoparticles showed size diameter in the range of 134 ± 58 nm as measured using ImageJ. In the electrospun PU/chitosan graft, the fiber diameter and pore size diameter was found to be reduced compared to the pure PU owing to incorporation of chitosan into PU matrix. The FTIR spectrum revealed the presence of chitosan in the prepared nanocomposite membrane by the formation of the hydrogen bond and peak shift of CH and NH stretching. Moreover, the contact angle measurements revealed that the prepared graft showed decreased contact angle indicating hydrophilic nature compared to the pristine PU. The cytocompatibility studies revealed the non-toxic behavior of the fabricated graft. Hence, the prepared graft exhibiting significant physiochemical and non-toxic properties may be a plausible candidate for cardiovascular graft applications.


Polyurethane/chitosan membrane Ionic gelation method Electrospinning Physiochemical characterization Vascular graft 



This work was supported by the Ministry of Higher Education Malaysia with the Grant Number Q.J130000.2545.14H59.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Alhosseini, S. N., F. Moztarzadeh, M. Mozafari, S. Asgari, M. Dodel, A. Samadikuchaksaraei, S. Kargozar, and N. Jalali. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 7:25, 2012.Google Scholar
  2. 2.
    Anicuta, S. G., L. Dobre, M. Stroescu, and I. Jipa. Fourier transform infrared (FTIR) spectroscopy for characterization of antimicrobial films containing chitosan. Analele Universită Ńii din Oradea Fascicula: Ecotoxicologie, Zootehnie şi Tehnologii de Industrie Alimentară 1234–1240, 2010.Google Scholar
  3. 3.
    Badylak, S. F., G. C. Lantz, A. Coffey, and L. A. Geddes. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47:74–80, 1989.CrossRefGoogle Scholar
  4. 4.
    Berger, K., L. R. Sauvage, A. M. Rao, and S. J. Wood. Healing of arterial prostheses in man: its incompleteness. Ann. Surg. 175(1):118, 1972.CrossRefGoogle Scholar
  5. 5.
    Cooper, A., N. Bhattarai, and M. Zhang. Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr. Polym. 85(1):149–156, 2011.CrossRefGoogle Scholar
  6. 6.
    Cooper, A., S. Jana, N. Bhattarai, and M. Zhang. Aligned chitosan-based nanofibers for enhanced myogenesis. J. Mater. Chem. 20:8904–8911, 2010.CrossRefGoogle Scholar
  7. 7.
    Esquivel, R., J. Juárez, M. Almada, J. Ibarra, and M. A. Valdez. Synthesis and characterization of new thiolated chitosan nanoparticles obtained by ionic gelation method. Int. J. Polym. Sci. 2015. Scholar
  8. 8.
    Garg, K., S. A. Sell, P. Madurantakam, and G. L. Bowlin. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts. Biomed. Mater. 4(3):031001, 2009.CrossRefGoogle Scholar
  9. 9.
    Hong, S., and G. Kim. Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr. Polym. 83(2):940–946, 2011.CrossRefGoogle Scholar
  10. 10.
    Huynh, T., G. Abraham, J. Murray, K. Brockbank, P. O. Hagen, and S. Sullivan. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat. Biotechnol. 17(11):1083, 1999.CrossRefGoogle Scholar
  11. 11.
    Ishii, O., M. Shin, T. Sueda, and J. P. Vacanti. In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J. Thorac. Cardiovasc. Surg. 130:1358–1363, 2005.CrossRefGoogle Scholar
  12. 12.
    Jaganathan, S. K., M. P. Mani, M. Ayyar, N. P. Krishnasamy, and G. Nageswaran. Blood compatibility and physicochemical assessment of novel nanocomposite comprising polyurethane and dietary carotino oil for cardiac tissue engineering applications. J. Appl. Polym. Sci. 2017. Scholar
  13. 13.
    Jang, B. S., J. Y. Cheon, S. H. Kim, and W. H. Park. Small diameter vascular graft with fibroblast cells and electrospun poly (l-lactide-co-ε-caprolactone) scaffolds: cell matrix engineering. J. Biomater. Sci. Polym. Ed. 29:942–959, 2017.CrossRefGoogle Scholar
  14. 14.
    Jia, L., M. P. Prabhakaran, X. Qin, and S. Ramakrishna. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J. Biomater. Appl. 29:364–377, 2014.CrossRefGoogle Scholar
  15. 15.
    Kamat, V., D. Bodas, and K. Paknikar. Chitosan nanoparticles synthesis caught in action using microdroplet reactions. Sci. Rep. 6:22260, 2016.CrossRefGoogle Scholar
  16. 16.
    Kim, S. E., D. N. Heo, J. B. Lee, J. R. Kim, S. H. Park, S. H. Jeon, and I. K. Kwon. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 4(4):044106, 2009.CrossRefGoogle Scholar
  17. 17.
    Kim, S., and S. Liu. Smart and biostable polyurethanes for long-term implants. ACS Biomater. Sci. Eng. 2018. Scholar
  18. 18.
    Lee, S. J., J. J. Yoo, G. J. Lim, A. Atala, and J. Stitzel. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res. A. 83(4):999–1008, 2007.CrossRefGoogle Scholar
  19. 19.
    Loh, Q. L., and C. Choong. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. B 19(6):485–502, 2013.CrossRefGoogle Scholar
  20. 20.
    Malheiro, V. N., S. G. Caridade, N. M. Alves, and J. F. Mano. New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 6(2):418–428, 2010.CrossRefGoogle Scholar
  21. 21.
    Mano, J. F., G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, and N. M. Neves. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4(17):999–1030, 2007.CrossRefGoogle Scholar
  22. 22.
    McCarthy, S. J., G. F. Meijs, N. Mitchell, P. A. Gunatillake, G. Heath, A. Brandwood, and K. Schindhelm. In-vivo degradation of polyurethanes: transmission-FTIR microscopic characterization of polyurethanes sectioned by cryomicrotomy. Biomaterials 18(21):1387–1409, 1997.CrossRefGoogle Scholar
  23. 23.
    Mokhena, T. C., V. Jacobs, and A. S. Luyt. A review on electrospun bio-based polymers for water treatment. Polym. Lett. 9(10):839–880, 2015.CrossRefGoogle Scholar
  24. 24.
    Narayan, D., and S. S. Venkatraman. Effect of pore size and interpore distance on endothelial cell growth on polymers. J. Biomed. Mater. Res. A 87(3):710–718, 2008.CrossRefGoogle Scholar
  25. 25.
    Pektok, E., B. Nottelet, J. C. Tille, R. Gurny, A. Kalangos, M. Moeller, and B. H. Walpoth. Degradation and healing characteristics of small-diameter poly (e-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118(24):2563–2570, 2008.CrossRefGoogle Scholar
  26. 26.
    Pillai, C. K., W. Paul, and C. P. Sharma. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7):641–678, 2009.CrossRefGoogle Scholar
  27. 27.
    Sathiyabama, M., and R. Parthasarathy. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr. Polym. 151:321–325, 2016.CrossRefGoogle Scholar
  28. 28.
    Subramaniam, A., and S. Sethuraman. Biomedical applications of nondegradable polymers. Nat. Synth. Biomed. Polym. 2014. Scholar
  29. 29.
    Syazana, N., and I. Sukmana. Electrospun-based fibrous scaffold for cardiovascular engineering applications: a review. J. Eng. Appl. Sci. 11(7):4778–4781, 2006.Google Scholar
  30. 30.
    Tijing, L. D., M. T. Ruelo, A. Amarjargal, H. R. Pant, C. H. Park, D. W. Kim, and C. S. Kim. Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem. Eng. J. 197:41–48, 2012.CrossRefGoogle Scholar
  31. 31.
    Unnithan, A. R., P. T. Pichiah, G. Gnanasekaran, K. Seenivasan, N. A. Barakat, Y. S. Cha, C. H. Jung, A. Shanmugam, and H. Y. Kim. Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloid Surf. A 415:454–460, 2012.CrossRefGoogle Scholar
  32. 32.
    Unnithan, A. R., P. B. Tirupathi, G. Gnanasekaran, K. Seenivasan, A. M. B. Nasser, Y. S. Jung, and J. Che-Hun. Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloids Surf. A 415:454–460, 2012.CrossRefGoogle Scholar
  33. 33.
    Wang, H., Y. Feng, B. An, W. Zhang, M. Sun, Z. Fang, W. Yuan, and M. Khan. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. J. Mater. Sci. 23(6):1499–1510, 2012.Google Scholar
  34. 34.
    Wang, W., and C. Wang. Polyurethane for biomedical applications: a review of recent developments. Des. Manuf. Med. Device 2012. Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Faculty of Biosciences and Medical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.IJN-UTM Cardiovascular Engineering Centre, Department of Clinical Sciences, Faculty of Biosciences and Medical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations