Skip to main content

Realistic Vascular Replicator for TAVR Procedures


Transcatheter aortic valve replacement (TAVR) is an over-the-wire procedure for treatment of severe aortic stenosis (AS). TAVR valves are conventionally tested using simplified left heart simulators (LHS). While those provide baseline performance reliably, their aortic root geometries are far from the anatomical in situ configuration, often overestimating the valves’ performance. We report on a novel benchtop patient-specific arterial replicator designed for testing TAVR and training interventional cardiologists in the procedure. The Replicator is an accurate model of the human upper body vasculature for training physicians in percutaneous interventions. It comprises of fully-automated Windkessel mechanism to recreate physiological flow conditions. Calcified aortic valve models were fabricated and incorporated into the Replicator, then tested for performing TAVR procedure by an experienced cardiologist using the Inovare valve. EOA, pressures, and angiograms were monitored pre- and post-TAVR. A St. Jude mechanical valve was tested as a reference that is less affected by the AS anatomy. Results in the Replicator of both valves were compared to the performance in a commercial ISO-compliant LHS. The AS anatomy in the Replicator resulted in a significant decrease of the TAVR valve performance relative to the simplified LHS, with EOA and transvalvular pressures comparable to clinical data. Minor change was seen in the mechanical valve performance. The Replicator showed to be an effective platform for TAVR testing. Unlike a simplified geometric anatomy LHS, it conservatively provides clinically-relevant outcomes and complement it. The Replicator can be most valuable for testing new valves under challenging patient anatomies, physicians training, and procedural planning.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7



Aortic stenosis


Aortic regurgitation


Calcific aortic valve disease


Cardiac output


Effective orifice area


Left heart simulator


Pulse duplicator


Paravalvular leak


Transcatheter aortic valve replacement


  1. 1.

    Alkhouli, M., and P. P. Sengupta. 3-dimensional-printed models for TAVR planning: why guess when you can see? JACC Cardiovasc. Imaging. 10(7):732–734, 2017.

    Article  Google Scholar 

  2. 2.

    Amat-Santos, I. J., A. Dahou, J. Webb, D. Dvir, J. G. Dumesnil, R. Allende, et al. Comparison of hemodynamic performance of the balloon-expandable SAPIEN 3 versus SAPIEN XT transcatheter valve. Am. J. Cardiol. 114(7):1075–1082, 2014.

    Article  Google Scholar 

  3. 3.

    American College of C, American Heart Association Task Force on Practice G, Society of Cardiovascular A, R. O. Bonow, B. A. Carabello, K. Chatterjee, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 48(3):e1–e148, 2006.

    Article  Google Scholar 

  4. 4.

    Armillotta, A., P. Bonhoeffer, G. Dubini, S. Ferragina, F. Migliavacca, G. Sala, et al. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc. Inst. Mech. Eng. Part H 221(4):407–416, 2007.

    Article  Google Scholar 

  5. 5.

    Arthur, A., D. Hoit, A. Coon, J. E. D. Almandoz, L. Elijovich, S. Cekirge, et al. Physician training protocol within the WEB Intrasaccular Therapy (WEB-IT) study. J. Neurointerv. Surg. 17:13310, 2017.

    Google Scholar 

  6. 6.

    Bianchi, M., G. Marom, R. P. Ghosh, H. A. Fernandez, J. R. Taylor, M. J. Slepian, et al. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Organs. 2016.

    Article  Google Scholar 

  7. 7.

    Bloodworth, C. H., E. L. Pierce, T. F. Easley, A. Drach, A. H. Khalighi, M. Toma, et al. Ex vivo methods for informing computational models of the mitral valve. Ann. Biomed. Eng. 45(2):496–507, 2017.

    Article  Google Scholar 

  8. 8.

    Cao, C., S. C. Ang, P. Indraratna, C. Manganas, P. Bannon, D. Black, et al. Systematic review and meta-analysis of transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis. Ann. Cardiothorac. Surg. 2(1):10–23, 2013.

    Article  Google Scholar 

  9. 9.

    De Paulis, R., C. Schmitz, R. Scaffa, P. Nardi, L. Chiariello, and H. Reul. In vitro evaluation of aortic valve prosthesis in a novel valved conduit with pseudosinuses of Valsalva. J. Thorac. Cardiovasc. Surg. 130(4):1016–1021, 2005.

    Article  Google Scholar 

  10. 10.

    Douglas, P. S., M. B. Leon, M. J. Mack, L. G. Svensson, J. G. Webb, R. T. Hahn, et al. Longitudinal hemodynamics of transcatheter and surgical aortic valves in the PARTNER Trial. JAMA Cardiol. 2(11):1197–1206, 2017.

    Article  Google Scholar 

  11. 11.

    Falahatpisheh, A., D. Morisawa, T. T. Toosky, and A. Kheradvar. A calcified polymeric valve for valve-in-valve applications. J. Biomech. 50:77–82, 2017.

    Article  Google Scholar 

  12. 12.

    Gaia, D. F., J. R. Breda, C. B. Duarte Ferreira, J. A. Marcondes de Souza, M. T. Macedo, M. V. Gimenes, et al. New Braile Inovare transcatheter aortic prosthesis: clinical results and follow-up. EuroIntervention 11(6):682–689, 2015.

    Article  Google Scholar 

  13. 13.

    Gallet, R., A. Seemann, M. Yamamoto, D. Hayat, G. Mouillet, J. L. Monin, et al. Effect of transcatheter (via femoral artery) aortic valve implantation on the platelet count and its consequences. Am. J. Cardiol. 111(11):1619–1624, 2013.

    Article  Google Scholar 

  14. 14.

    Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 129(3):e28–e292, 2014.

    Article  Google Scholar 

  15. 15.

    Groves, E. M., A. Falahatpisheh, J. L. Su, and A. Kheradvar. The effects of positioning of transcatheter aortic valves on fluid dynamics of the aortic root. ASAIO J. 60(5):545–552, 2014.

    Article  Google Scholar 

  16. 16.

    Gunning, P. S., N. Saikrishnan, L. M. McNamara, and A. P. Yoganathan. An in vivo evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42(6):1195–1206, 2014.

    Article  Google Scholar 

  17. 17.

    Gunning, P. S., N. Saikrishnan, A. P. Yoganathan, and L. M. McNamara. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement. J. R. Soc. Interface 2015.

    Article  Google Scholar 

  18. 18.

    Kalejs, M., and L. K. von Segesser. Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact. Cardiovasc. Thorac Surg. 8(2):182–186, 2009.

    Article  Google Scholar 

  19. 19.

    Kappetein, A. P., S. J. Head, P. Genereux, N. Piazza, N. M. van Mieghem, E. H. Blackstone, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J. Am. Coll. Cardiol. 60(15):1438–1454, 2012.

    Article  Google Scholar 

  20. 20.

    Kuetting, M., A. Sedaghat, M. Utzenrath, J. M. Sinning, C. Schmitz, J. Roggenkamp, et al. In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. J. Biomech. 47(5):957–965, 2014.

    Article  Google Scholar 

  21. 21.

    Kurtz, C. E., and C. M. Otto. Aortic stenosis: clinical aspects of diagnosis and management, with 10 illustrative case reports from a 25-year experience. Medicine. 89(6):349–379, 2010.

    Article  Google Scholar 

  22. 22.

    Maragiannis, D., M. S. Jackson, S. R. Igo, S. M. Chang, W. A. Zoghbi, and S. H. Little. Functional 3D printed patient-specific modeling of severe aortic stenosis. J. Am. Coll. Cardiol. 64(10):1066–1068, 2014.

    Article  Google Scholar 

  23. 23.

    Maragiannis, D., M. S. Jackson, S. R. Igo, R. C. Schutt, P. Connell, J. Grande-Allen, et al. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ. Cardiovasc. Imaging. 8(10):e003626, 2015.

    Article  Google Scholar 

  24. 24.

    Meschini, V., M. De Tullio, G. Querzoli, and R. Verzicco. Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. J. Fluid Mech. 834:271–307, 2018.

    MathSciNet  Article  Google Scholar 

  25. 25.

    Midha, P. A., V. Raghav, J. F. Condado, I. U. Okafor, S. Lerakis, V. H. Thourani, et al. Valve type, size, and deployment location affect hemodynamics in an in vivo valve-in-valve model. JACC Cardiovasc. Interv. 9(15):1618–1628, 2016.

    Article  Google Scholar 

  26. 26.

    Midha, P. A., V. Raghav, I. Okafor, and A. P. Yoganathan. The effect of valve-in-valve implantation height on sinus flow. Ann. Biomed. Eng. 45(2):405–412, 2017.

    Article  Google Scholar 

  27. 27.

    Nardi, A., B. Even-Chen, and I. Avrahami. Experimental and numerical study of the flow dynamics in treatment approaches for aortic arch aneurysms. InTech: Aortic Aneurysm, 2017.

    Book  Google Scholar 

  28. 28.

    Otto, C. M. Calcific aortic stenosis–time to look more closely at the valve. N Engl J Med. 359(13):1395–1398, 2008.

    Article  Google Scholar 

  29. 29.

    Otto, C. M., J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O’Brien. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 90(2):844–853, 1994.

    Article  Google Scholar 

  30. 30.

    Rahmani, B., S. Tzamtzis, R. Sheridan, M. J. Mullen, J. Yap, A. M. Seifalian, et al. In vitro hydrodynamic assessment of a new transcatheter heart valve concept (the TRISKELE). J. Cardiovasc. Transl. Res. 10(2):104–115, 2017.

    Article  Google Scholar 

  31. 31.

    Reynolds, M. R., E. A. Magnuson, K. Wang, Y. Lei, K. Vilain, J. Walczak, et al. Cost-effectiveness of transcatheter aortic valve replacement compared with standard care among inoperable patients with severe aortic stenosis: results from the placement of aortic transcatheter valves (PARTNER) trial (Cohort B). Circulation. 125(9):1102–1109, 2012.

    Article  Google Scholar 

  32. 32.

    Reynolds, M. R., E. A. Magnuson, K. Wang, V. H. Thourani, M. Williams, A. Zajarias, et al. Health-related quality of life after transcatheter or surgical aortic valve replacement in high-risk patients with severe aortic stenosis: results From the PARTNER (Placement of AoRTic TraNscathetER Valve) trial (Cohort A). J. Am. Coll. Cardiol. 60(6):548–558, 2012.

    Article  Google Scholar 

  33. 33.

    Rosenhek, R., T. Binder, G. Maurer, and H. Baumgartner. Normal values for Doppler echocardiographic assessment of heart valve prostheses. J. Am. Soc. Echocardiogr. 16(11):1116–1127, 2003.

    Article  Google Scholar 

  34. 34.

    Salaun, E., A. S. Zenses, M. Evin, F. Collart, G. Habib, P. Pibarot, et al. Effect of oversizing and elliptical shape of aortic annulus on transcatheter valve hemodynamics: an in vitro study. Int. J. Cardiol. 208:28–35, 2016.

    Article  Google Scholar 

  35. 35.

    Shames, S., A. Koczo, R. Hahn, Z. Jin, M. H. Picard, and L. D. Gillam. Flow characteristics of the SAPIEN aortic valve: the importance of recognizing in-stent flow acceleration for the echocardiographic assessment of valve function. J. Am. Soc. Echocardiogr. 25(6):603–609, 2012.

    Article  Google Scholar 

  36. 36.

    Siefert, A. W., J. P. M. Rabbah, K. J. Koomalsingh, S. A. Touchton, N. Saikrishnan, J. R. McGarvey, et al. In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann. Thorac. Surg. 95(3):825–830, 2013.

    Article  Google Scholar 

  37. 37.

    Simard, L., N. Cote, F. Dagenais, P. Mathieu, C. Couture, S. Trahan, et al. Sex-related discordance between aortic valve calcification and hemodynamic severity of aortic stenosis: is valvular fibrosis the explanation? Circ. Res. 120(4):681–691, 2017.

    Article  Google Scholar 

  38. 38.

    Spethmann, S., H. Dreger, G. Baldenhofer, E. Pflug, W. Sanad, V. Stangl, et al. Long-term Doppler hemodynamics and effective orifice areas of Edwards SAPIEN and medtronic CoreValve prostheses after TAVI. Echocardiography. 31(3):302–310, 2014.

    Article  Google Scholar 

  39. 39.

    Thourani, V. H., S. Kodali, R. R. Makkar, H. C. Herrmann, M. Williams, V. Babaliaros, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. The Lancet. 387(10034):2218–2225, 2016.

    Article  Google Scholar 

  40. 40.

    Vahanian, A., H. Baumgartner, J. Bax, E. Butchart, R. Dion, G. Filippatos, et al. Guidelines on the management of valvular heart disease: the task force on the Management of valvular heart disease of the European Society of Cardiology. Eur. Heart J. 28(2):230–268, 2007.

    Article  Google Scholar 

  41. 41.

    Wagner, M., S. Schafer, C. Strother, and C. Mistretta. 4D interventional device reconstruction from biplane fluoroscopy. Med. Phys. 43(3):1324–1334, 2016.

    Article  Google Scholar 

  42. 42.

    Weiler, M., C. H. Yap, K. Balachandran, M. Padala, and A. P. Yoganathan. Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. J. Biomech. 44(8):1459–1465, 2011.

    Article  Google Scholar 

  43. 43.

    Wu, W., D. Pott, B. Mazza, T. Sironi, E. Dordoni, C. Chiastra, et al. Fluid-structure interaction model of a percutaneous aortic valve: comparison with an in vivo test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 2015.

    Article  Google Scholar 

Download references


The authors would like to acknowledge Braile Biomédica from Brazil, for providing us with the 24 mm Inovare TAVR valve.


This project was supported by NIH-NIBIB Quantum Award Phase II-1U01EB012487 (DB) and NHLBI STTR R41-HL134418 (DB).

Conflict of interest

Author OR was a consultant for Vascular Simulations LLC. Author BK is partly employed by Vascular Simulations LLC. Author CS has stock ownership in Vascular Simulations LLC. Author BL has stock ownership in Vascular Simulations LLC. Author LG declares that he has no conflicts of interest. Author DB declares that he has no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was waived by the Stony Brook University Institutional Review Board as this study was retrospective and the CT scans for this study were received anonymized. This article does not contain any studies with animals performed by any of the authors.

Author information



Corresponding author

Correspondence to Danny Bluestein.

Additional information

Associate Editor Wei Sun and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Video1 Guidance of the delivery system via femoral access in the Replicator. Supplementary material 1 (MP4 20537 kb)

Online Video2 Deployment of the 24 mm Inovare valve in the Replicator. Supplementary material 2 (MP4 17906 kb)

Online Video3 Inovare valve in the Replicator post-procedural. Supplementary material 3 (MP4 13954 kb)

Online Video4 Angiogram of the severe calcified aortic valve model (S-CAVD-50) pre-TAVR. Left – original angiogram; Right – subtracted angiogram. Supplementary material 4 (MP4 2245 kb)

Online Video 5 Angiogram of the severe calcified aortic valve model (S-CAVD-50) post-TAVR. Left – original angiogram; Right – subtracted angiogram. Supplementary material 5 (MP4 2244 kb)

Online Video 6 Video of the Inovare TAVR valve; Left – in the Vivitro PD; Right – in the Replicator. Supplementary material 6 (MP4 6138 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rotman, O.M., Kovarovic, B., Sadasivan, C. et al. Realistic Vascular Replicator for TAVR Procedures. Cardiovasc Eng Tech 9, 339–350 (2018).

Download citation


  • TAVI
  • Aortic stenosis
  • Aortic valve
  • Mitral valve
  • Prosthetic valve
  • 3D printing