Skip to main content
Log in

Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Cerebral angiography involves the antegrade injection of contrast media through a catheter into the vasculature to visualize the region of interest under X-ray imaging. Depending on the injection and blood flow parameters, the bolus of contrast can propagate in the upstream direction and proximal to the catheter tip, at which point contrast is said to have refluxed. In this in vitro study, we investigate the relationship of fundamental hemodynamic variables to this phenomenon. Contrast injections were carried out under steady and pulsatile flow using various vessel diameters, catheter sizes, working fluid flow rates, and injection rates. The distance from the catheter tip to the proximal edge of the contrast bolus, called reflux length, was measured on the angiograms; the relation of this reflux length to different hemodynamic parameters was evaluated. Results show that contrast reflux occurs when the pressure distal to the catheter tip increases to be greater than the pressure proximal to the catheter tip. The ratio of this pressure difference to the baseline flow rate, called reflux resistance here, was linearly correlated to the normalized reflux length (reflux length/vessel diameter). Further, the ratio of blood flow to contrast fluid momentums, called the Craya–Curtet number, was correlated to the normalized reflux length via a sigmoid function. A sigmoid function was also found to be representative of the relationship between the ratio of the Reynolds numbers of blood flow to contrast and the normalized reflux length. As described by previous reports, catheter based contrast injections cause substantial increases in local flow and pressure. Contrast reflux should generally be avoided during standard antegrade angiography. Our study shows two specific correlations between contrast reflux length and baseline and intra-injection parameters that have not been published previously. Further studies need to be conducted to fully characterize the phenomena and to extract reliable indicators of clinical utility. Parameters relevant to cerebral angiography are studied here, but the essential principles are applicable to all angiographic procedures involving antegrade catheter injections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aviram, G., D. Cohen, A. Steinvil, H. Shmueli, G. Keren, S. Banai, et al. Significance of reflux of contrast medium into the inferior vena cava on computerized tomographic pulmonary angiogram. Am. J. Cardiol. 109(3):432–437, 2012. https://doi.org/10.1016/j.amjcard.2011.09.033.

    Article  Google Scholar 

  2. Becker, H. A. Discussion:“Confined jet mixing for nonseparating conditions”(Razinsky, E., and Brighton, JA, 1971, ASME J. Basic Eng., 93, pp. 333–347). J. Basic Eng. 93(3):347, 1971.

  3. Celtikci, P., O. Eraslan, O. Ergun, E. Soyer Guldogan, and M. E. Turkoglu. Active rebleeding from a ruptured middle cerebral artery aneurysm during diagnostic catheter angiography. Turk Neurosurg. 2017. https://doi.org/10.5137/1019-5149.jtn.19629-16.2.

    Google Scholar 

  4. Demirpolat, G., M. Yuksel, G. Kavukcu, and D. Tuncel. Carotid CT angiography: comparison of image quality for left versus right arm injections. Diagn. Interv. Radiol. 17(3):195–198, 2011. https://doi.org/10.4261/1305-3825.dir.3290-10.1.

    Google Scholar 

  5. Dublin, A. B., and B. N. French. Cerebral aneurysmal rupture during angiography with confirmation by computed tomography: a review of intra-angiographic aneurysmal rupture. Surg. Neurol. 13(1):19–26, 1980.

    Google Scholar 

  6. Dusaj, R. S., K. C. Michelis, M. Terek, R. Sanai, R. Mittal, J. F. Lewis, et al. Estimation of right atrial and ventricular hemodynamics by CT coronary angiography. J Cardiovasc Comput Tomogr. 5(1):44–49, 2011. https://doi.org/10.1016/j.jcct.2010.10.005.

    Article  Google Scholar 

  7. Endres, J., Redel, T., Kowarschik, M., Hutter, J., Hornegger, J., Doerfler, A. (eds.). Virtual angiography using CFD simulations based on patient-specific parameter optimization. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, 2012.

  8. Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, et al. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24(12):1586–1592, 2005.

    Article  Google Scholar 

  9. Genereux, P., R. Mehran, M. B. Leon, N. Bettinger, and G. W. Stone. Classification for assessing the quality of diagnostic coronary angiography. J. Invasive Cardiol. 29:417–420, 2017.

    Google Scholar 

  10. Gianturco, C., T. Shimizu, F. R. Stefferda, and R. P. Taylor. Measurement of blood flow by angiography with increasing rate of injection: experimental study. Investig. Radiol. 5(5):361–363, 1970.

    Article  Google Scholar 

  11. Hao, Q., and B. B. Lieber. Dispersive transport of angiographic contrast during antegrade arterial injection. Cardiovasc. Eng. Technol. 3(2):171–178, 2012.

    Article  Google Scholar 

  12. Hayakawa, K., T. W. Morris, R. W. Katzberg, and H. W. Fischer. Cardiovascular responses to the intravertebral artery injection of hypertonic contrast media in the dog. Investig. Radiol. 20(2):217–221, 1985.

    Article  Google Scholar 

  13. Henriksen, J. H., G. B. Jensen, and H. B. Larsson. A century of indicator dilution technique. Clin. Physiol. Funct. Imaging 34(1):1–9, 2014. https://doi.org/10.1111/cpf.12068.

    Article  Google Scholar 

  14. Hilal, S. K. Hemodynamic changes associated with the intra-arterial injection of contrast media. New toxicity tests and a new experimental contrast medium. Radiology 86(4):615–633, 1966. https://doi.org/10.1148/86.4.615.

    Article  Google Scholar 

  15. Hingwala, D. R., B. Thomas, C. Kesavadas, and T. R. Kapilamoorthy. Suboptimal contrast opacification of dynamic head and neck MR angiography due to venous stasis and reflux: technical considerations for optimization. AJNR Am. J. Neuroradiol. 32(2):310–314, 2011. https://doi.org/10.3174/ajnr.A2301.

    Article  Google Scholar 

  16. Huang, B., J. Chang, C. Wang, and V. Petrenko. A 1-D analysis of ejector performance. Int. J. Refrig. 22(5):354–364, 1999.

    Article  Google Scholar 

  17. Kaye, D. M., D. Stub, V. Mak, T. Doan, and S. J. Duffy. Reducing iodinated contrast volume by manipulating injection pressure during coronary angiography. Catheter. Cardiovasc. Interv. 83(5):741–745, 2014. https://doi.org/10.1002/ccd.25348.

    Article  Google Scholar 

  18. Keenan, J. H., E. P. Neumann, and F. Lustwerk. An investigation of ejector design by analysis and experiment. Cambridge, MA: Massachusetts Institute of Technology, Guided Missiles Program, 1948.

    Google Scholar 

  19. Kusumi, M., M. Yamada, T. Kitahara, M. Endo, S. Kan, H. Iida, et al. Rerupture of cerebral aneurysms during angiography–a retrospective study of 13 patients with subarachnoid hemorrhage. Acta Neurochir. (Wien) 147(8):831–837, 2005. https://doi.org/10.1007/s00701-005-0541-3.

    Article  Google Scholar 

  20. Levin, D. C. Augmented arterial flow and pressure resulting from selective injections through catheters: clinical implications. Radiology 127(1):103–108, 1978. https://doi.org/10.1148/127.1.103.

    Article  MathSciNet  Google Scholar 

  21. Levin, D. C., D. A. Phillips, S. Lee-Son, and P. R. Maroko. Hemodynamic changes distal to selective arterial injections. Investig. Radiol. 12(2):116–120, 1977.

    Article  Google Scholar 

  22. Lieber, B. B., C. Sadasivan, M. J. Gounis, J. Seong, L. Miskolczi, and A. K. Wakhloo. Functional angiography. Crit. Rev. Biomed. Eng. 33(1):1–102, 2005.

    Article  Google Scholar 

  23. Lieber, B. B., C. Sadasivan, Q. Hao, J. Seong, and L. Cesar. The mixability of angiographic contrast with arterial blood. Med. Phys. 36(11):5064–5078, 2009. https://doi.org/10.1118/1.3243079.

    Article  Google Scholar 

  24. Mabon, R. F., P. D. Soder, W. A. Carpenter, and D. P. Giddens. Fluid dynamics in cerebral angiography. Radiology 128(3):669–676, 1978. https://doi.org/10.1148/128.3.669.

    Article  Google Scholar 

  25. Morris, T. W., M. Francis, and H. W. Fischer. A comparison of the cardiovascular responses to carotid injections of ionic and nonionic contrast media. Investig. Radiol. 14(3):217–223, 1979.

    Google Scholar 

  26. Morris, T. W., and C. S. Walike. An in vitro study of the hemodynamic effects of catheter injections. Investig. Radiol. 24(5):361–365, 1989.

    Article  Google Scholar 

  27. Mulder, G., A. Bogaerds, P. Rongen, and F. van de Vosse. The influence of contrast agent injection on physiological flow in the circle of Willis. Med. Eng. Phys. 33(2):195–203, 2011.

    Article  Google Scholar 

  28. Prasad, A., C. Ortiz-Lopez, D. M. Kaye, M. Byrne, S. Nanayakkara, S. H. Ahmed, et al. The use of the AVERT system to limit contrast volume administration during peripheral angiography and intervention. Catheter. Cardiovasc. Interv. 86(7):1228–1233, 2015. https://doi.org/10.1002/ccd.26155.

    Article  Google Scholar 

  29. Razinsky, E., and J. Brighton. Confined jet mixing for nonseparating conditions. J. Basic Eng. 93(3):333–347, 1971.

    Article  Google Scholar 

  30. Rosengarten, B., M. K. Steen-Muller, A. Muller, H. Traupe, R. K. Voss, and M. Kaps. Contrast media effect on cerebral blood flow regulation after performance of cerebral or coronary angiography. Cerebrovasc. Dis. 16(1):42–46, 2003.

    Article  Google Scholar 

  31. Saitoh, H., K. Hayakawa, K. Nishimura, Y. Okuno, C. Murayama, T. Miyazawa, et al. Intracarotid blood pressure changes during contrast medium injection. AJNR Am. J. Neuroradiol. 17(1):51–54, 1996.

    Google Scholar 

  32. Saitoh, H., K. Hayakawa, K. Nishimura, Y. Okuno, T. Teraura, K. Yumitori, et al. Rerupture of cerebral aneurysms during angiography. Am. J. Neuroradiol. 16(3):539–542, 1995.

    Google Scholar 

  33. Sampei, T., N. Yasui, M. Mizuno, S. Nakajima, T. Ishikawa, H. Hadeishi, et al. Contrast medium extravasation during cerebral angiography for ruptured intracranial aneurysm; clinical analysis of 26 cases. Neurol. Med. Chir. 30(13):1011–1015, 1990. https://doi.org/10.2176/nmc.30.1011.

    Article  Google Scholar 

  34. Shpilfoygel, S. D., R. A. Close, D. J. Valentino, and G. R. Duckwiler. X-ray videodensitometric methods for blood flow and velocity measurement: a critical review of literature. Med. Phys. 27(9):2008–2023, 2000. https://doi.org/10.1118/1.1288669.

    Article  Google Scholar 

  35. Singh, G. Entrainment and mixing studies for a variable density confined jet. Numer. Heat Transf. Part A Appl. 35(2):205–224, 1999.

    Article  MathSciNet  Google Scholar 

  36. Skorczewski, T., L. C. Erickson, and A. L. Fogelson. Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations. Biophys. J. 104(8):1764–1772, 2013.

    Article  Google Scholar 

  37. Stoel, M., J. Kandhai-Ragunath, G. Van Houwelingen, and C. Von Birgelen. Impact of dye injection on intracoronary pressure. EuroIntervention 5(2):272–276, 2009.

    Article  Google Scholar 

  38. Sun, Q., A. Groth, and T. Aach. Comprehensive validation of computational fluid dynamics simulations of in vivo blood flow in patient-specific cerebral aneurysms. Med. Phys. 39(2):742–754, 2012. https://doi.org/10.1118/1.3675402.

    Article  Google Scholar 

  39. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 219(1137):186, 1953.

    Article  Google Scholar 

  40. Vali, A., A. A. Abla, M. T. Lawton, D. Saloner, and V. L. Rayz. Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries. J. Biomech. 50:195–201, 2017.

    Article  Google Scholar 

  41. Waldenberger, P., A. Chemelli, and A. Mallouhi. Intra-arterial haemodynamic changes during cerebral three-dimensional rotational angiography. Eur. Radiol. 19(2):503–508, 2009. https://doi.org/10.1007/s00330-008-1161-0.

    Article  Google Scholar 

  42. Wolf, G. L., D. D. Shaw, H. A. Baltaxe, K. Kilzer, and L. Kraft. A proposed mechanism for transient increases in arterial pressure and flow during angiographic injections. Investig. Radiol. 13(3):195–199, 1978.

    Article  Google Scholar 

  43. Woodfield, P. L. , Nakabe, K., Suzuki, K. (eds.). Numerical computation on recirculation flow structures in co-axial confined laminar jets. In: 14th Symposium on Computational Fluid Dynamics 2000. Japan: Japanese Society of Fluid Mechanics.

  44. Yamashita, K., K. Hayakawa, M. Tanaka, and J. Konishi. Cardiovascular responses following the intracarotid injections of ionic and nonionic contrast media compared with various mannitol solutions. Correl. Osmolality Investig. Radiol. 23(9):680–686, 1988.

    Google Scholar 

  45. Yousem, D. M., and B. C. Trinh. Injection rates for neuroangiography: results of a survey. AJNR Am. J. Neuroradiol. 22(10):1838–1840, 2001.

    Google Scholar 

  46. Yule, A., and M. Damou. Investigations of ducted jets. Exp. Therm Fluid Sci. 4(4):469–490, 1991.

    Article  Google Scholar 

  47. Zaehringer, M., C. Wedekind, A. Gossmann, K. Krueger, G. Trenschel, and P. Landwehr. Aneurysmal re-rupture during selective cerebral angiography. Eur. Radiol. 12(Suppl 3):S18–S24, 2002. https://doi.org/10.1007/s00330-002-1460-9.

    Google Scholar 

Download references

Conflict of interest

Author BK is partly employed by Vascular Simulations LLC. All other authors have stock ownership in Vascular Simulations LLC.

Human/animal studies

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chander Sadasivan.

Additional information

Associate Editor David Elad and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovarovic, B., Woo, H.H., Fiorella, D. et al. Pressure and Flow Rate Changes During Contrast Injections in Cerebral Angiography: Correlation to Reflux Length. Cardiovasc Eng Tech 9, 226–239 (2018). https://doi.org/10.1007/s13239-018-0344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0344-3

Keywords

Navigation