Skip to main content

Advertisement

Log in

Coronary Stent Fracture: Clinical Evidence Vs. the Testing Paradigm

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The United States’ Food and Drug Administration (FDA) recommends that device manufacturers demonstrate 10 years of equivalent life duration for endovascular stents. Yet since the early 2000s clinical evidence of stent strut fracture defies the recommendations for these FDA approved devices. Stent strut fracture has been correlated with a higher incidence of adverse clinical events, such as in-stent thrombosis and in-stent restenosis.

Methods

This paper reviews the current clinical evidence, computational modelling relating to fatigue lifetimes, experimental testing of coronary stents, and the related regulatory guidance and standards.

Results

The scale of stent fracture is evident from the clinical data reviewed. In terms of model setups, either physical or computational the loadings, in particular, dictate the durability response.

Conclusions

The full scale of stent fracture is most likely under-reported and its assessment is dependent on detection time and detection resolution. Within the event of SF it is not necessarily consequential; further research is warranted to distinguish when the event negatively impacts the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Adlakha, S., M. Sheikh, J. Wu, M. W. Burket, U. Pandya, W. Colyer, E. Eltahawy, and C. J. Cooper. Stent fracture in the coronary and peripheral arteries. J. Interv. Cardiol. 23:411–419, 2010. https://doi.org/10.1111/j.1540-8183.2010.00567.x.

    Article  Google Scholar 

  2. AL-Mangour, B., R. Mongrain, and S. Yue. Coronary stents fracture: an engineering approach. Mater. Sci. Appl. 4:606, 2013. https://doi.org/10.4236/msa.2013.410075.

    Google Scholar 

  3. Aoki, J., G. Nakazawa, K. Tanabe, A. Hoye, H. Yamamoto, T. Nakayama, Y. Onuma, Y. Higashikuni, S. Otsuki, A. Yagishita, S. Yachi, H. Nakajima, and K. Hara. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Catheter Cardiovasc. Interv. 69:380–386, 2007. https://doi.org/10.1002/ccd.20950.

    Article  Google Scholar 

  4. Argente dos Santos, H. A. F., F. Auricchio, and M. Conti. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity–damage model approach. J. Mech. Behav. Biomed. Mater. 15:78–92, 2012. https://doi.org/10.1016/j.jmbbm.2012.06.011.

    Article  Google Scholar 

  5. ASTM. ASTM F2477 Standard Test Methods for in vitro Pulsatile Durability Testing of Vascular Stents, 2013.

  6. ASTM. Standard guide for in vitro axial, bending, and torsional durability testing of ASTM I, 2014. https://doi.org/10.1520/f2942-13.2.

  7. Azaouzi, M., A. Makradi, J. Petit, S. Belouettar, and O. Polit. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput. Mater. Sci. 79:326–335, 2013. https://doi.org/10.1016/j.commatsci.2013.05.043.

    Article  Google Scholar 

  8. Barrera, O., A. Makradi, M. Abbadi, M. Azaouzi, and S. Belouettar. On high-cycle fatigue of 316L stents. Comput. Methods Biomech. Biomed. Eng. 17:239–250, 2014. https://doi.org/10.1080/10255842.2012.677442.

    Article  Google Scholar 

  9. Benjamin, E. J., M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, R. Deo, S. D. de Ferranti, J. Floyd, M. Fornage, C. Gillespie, C. R. Isasi, M. C. Jiménez, L. C. Jordan, S. E. Judd, D. Lackland, J. H. Lichtman, L. Lisabeth, S. Liu, C. T. Longenecker, R. H. Mackey, K. Matsushita, D. Mozaffarian, M. E. Mussolino, K. Nasir, R. W. Neumar, L. Palaniappan, D. K. Pandey, R. R. Thiagarajan, M. J. Reeves, M. Ritchey, C. J. Rodriguez, G. A. Roth, W. D. Rosamond, C. Sasson, A. Towfighi, C. W. Tsao, M. B. Turner, S. S. Virani, J. H. Voeks, J. Z. Willey, J. T. Wilkins, J. H. Y. Wu, H. M. Alger, S. S. Wong, and P. Muntner. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603, 2017. https://doi.org/10.1161/CIR.0000000000000485.

    Article  Google Scholar 

  10. Bennett, J., M. Vanhaverbeke, N. Vanden Driessche, N. Hiltrop, T. Adriaenssens, W. Desmet, P. Sinnaeve, and C. Dubois. The drug-eluting resorbable magnesium vascular scaffold in complex coronary bifurcations: insights from an in vivo multimodality imaging study. EuroIntervention 13:2036–2046, 2018. https://doi.org/10.4244/EIJ-D-17-00248.

    Article  Google Scholar 

  11. Chakravarty, T., A. J. White, M. Buch, H. Naik, N. Doctor, J. Schapira, S. Kar, J. S. Forrester, R. E. Weiss, and R. Makkar. Meta-analysis of incidence, clinical characteristics and implications of stent fracture. Am. J. Cardiol. 106:1075–1080, 2010. https://doi.org/10.1016/j.amjcard.2010.06.010.

    Article  Google Scholar 

  12. Chinikar, M., and P. Sadeghipour. Coronary stent fracture: a recently appreciated phenomenon with clinical relevance. Curr Cardiol Rev 10:349–354, 2014. https://doi.org/10.2174/1573403X10666140404105923.

    Article  Google Scholar 

  13. Chung, W.-S., C.-S. Park, K.-B. Seung, P.-J. Kim, J.-M. Lee, B.-K. Koo, Y.-S. Jang, J.-Y. Yang, J.-H. Yoon, D.-I. Kim, Y.-W. Yoon, J.-S. Park, Y.-H. Cho, and S.-J. Park. The incidence and clinical impact of stent strut fractures developed after drug-eluting stent implantation. Int. J. Cardiol. 125:325–331, 2008. https://doi.org/10.1016/j.ijcard.2007.02.033.

    Article  Google Scholar 

  14. Conway, C., G. J. Desany, L. R. Bailey, J. H. Keating, B. L. Baker, and E. R. Edelman. Fracture in drug-eluting stents increases focal intimal hyperplasia in the atherosclerosed rabbit iliac artery. Catheter Cardiovasc. Interv. 2018. https://doi.org/10.1002/ccd.27726.

    Google Scholar 

  15. Cutlip, D. E., D. S. Baim, K. K. Ho, J. J. Popma, A. J. Lansky, D. J. Cohen, J. P. Carrozza, M. S. Chauhan, O. Rodriguez, and R. E. Kuntz. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 103:1967–1971, 2001. https://doi.org/10.1161/01.CIR.103.15.1967.

    Article  Google Scholar 

  16. Doi, H., A. Maehara, G. S. Mintz, K. Tsujita, T. Kubo, C. Castellanos, J. Liu, J. Yang, C. Oviedo, J. Aoki, T. Franklin-Bond, N. Dasgupta, A. J. Lansky, G. D. Dangas, G. W. Stone, J. W. Moses, R. Mehran, and M. B. Leon. Classification and potential mechanisms of intravascular ultrasound patterns of stent fracture. Am. J. Cardiol. 103:818–823, 2009. https://doi.org/10.1016/j.amjcard.2008.11.051.

    Article  Google Scholar 

  17. Donnelly, E., F. M. Weafer, T. Connolley, P. E. McHugh, and M. S. Bruzzi. Experimental investigation into the size effect on the microscale fatigue behaviour of 316L stainless steel. Int. J. Fatigue 95:1–7, 2017. https://doi.org/10.1016/j.ijfatigue.2016.10.007.

    Article  Google Scholar 

  18. Everett, K. D., C. Conway, G. J. Desany, B. L. Baker, G. Choi, C. A. Taylor, and E. R. Edelman. Structural mechanics predictions relating to clinical coronary stent fracture in a 5 year period in FDA MAUDE database. Ann. Biomed. Eng. 44:391–403, 2016. https://doi.org/10.1007/s10439-015-1476-3.

    Article  Google Scholar 

  19. FDA. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2010.

  20. FDA. Select updates for non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2015.

  21. Halkin, A., S. Carlier, and M. B. Leon. Late incomplete lesion coverage following Cypher stent deployment for diffuse right coronary artery stenosis. Heart 90:e45, 2004. https://doi.org/10.1136/hrt.2004.034538.

    Article  Google Scholar 

  22. Halwani, D. O., P. G. Anderson, B. C. Brott, A. S. Anayiotos, and J. E. Lemons. The role of vascular calcification in inducing fatigue and fracture of coronary stents. J. Biomed. Mater. Res. Part B Appl. Biomater. 100B:292–304, 2012. https://doi.org/10.1002/jbm.b.31911.

    Article  Google Scholar 

  23. Hao, P., M. Enoki, and K. Sakurai. Finite Element Analysis of Tensile Fatigue Behavior of Coronary Stent. Mater. Trans. 5:959–962, 2012.

    Article  Google Scholar 

  24. Hecht, H. S., S. Polena, V. Jelnin, M. Jimenez, T. Bhatti, M. Parikh, G. Panagopoulos, and G. Roubin. Stent gap by 64-detector computed tomographic angiography relationship to in-stent restenosis, fracture, and overlap failure. J. Am. Coll. Cardiol. 54:1949–1959, 2009. https://doi.org/10.1016/j.jacc.2009.06.045.

    Article  Google Scholar 

  25. ISO. ISO 25539 cardiovascular implants–endovascular devices–part 2: vascular stents, 2012, pp. 1–105

  26. Kajiya, T., M. Liang, R. K. Sharma, C.-H. Lee, M. Y. Chan, E. Tay, K.-H. Chan, H.-C. Tan, and A. F. Low. Everolimus-eluting bioresorbable vascular scaffold (BVS) implantation in patients with ST-segment elevation myocardial infarction (STEMI). EuroIntervention 9:501–504, 2013. https://doi.org/10.4244/EIJV9I4A80.

    Article  Google Scholar 

  27. Kang, W. Y., W. Kim, H. G. Kim, and W. Kim. Drug-eluting stent fracture occurred within 2 days after stent implantation. Int. J. Cardiol. 120:273–275, 2007. https://doi.org/10.1016/j.ijcard.2006.07.192.

    Article  Google Scholar 

  28. Kapnisis, K., G. Constantinides, H. Georgiou, D. Cristea, C. Gabor, D. Munteanu, B. Brott, P. Anderson, J. Lemons, and A. Anayiotos. Multi-scale mechanical investigation of stainless steel and cobalt–chromium stents. J. Mech. Behav. Biomed. Mater. 40:240–251, 2014. https://doi.org/10.1016/j.jmbbm.2014.09.010.

    Article  Google Scholar 

  29. Kapnisis, K. K., D. O. Halwani, B. C. Brott, P. G. Anderson, J. E. Lemons, and A. S. Anayiotos. Stent overlapping and geometric curvature influence the structural integrity and surface characteristics of coronary nitinol stents. J. Mech. Behav. Biomed. Mater. 20:227–236, 2013. https://doi.org/10.1016/j.jmbbm.2012.11.006.

    Article  Google Scholar 

  30. Karanasiou, G. S., M. I. Papafaklis, C. Conway, L. K. Michalis, R. Tzafriri, E. R. Edelman, and D. I. Fotiadis. Stents: biomechanics, biomaterials, and insights from computational modeling. Ann. Biomed. Eng. 45:853–872, 2017. https://doi.org/10.1007/s10439-017-1806-8.

    Article  Google Scholar 

  31. Kim, E. J., S.-W. Rha, S. P. Wani, S. Y. Suh, C. U. Choi, J. W. Kim, C. G. Park, H. S. Seo, and D. J. Oh. Coronary stent fracture and restenosis in the drug-eluting stent era: do we have clues of management? Int. J. Cardiol. 120:417–419, 2007. https://doi.org/10.1016/j.ijcard.2006.08.019.

    Article  Google Scholar 

  32. Kuramitsu, S., M. Iwabuchi, T. Haraguchi, T. Domei, A. Nagae, M. Hyodo, K. Yamaji, Y. Soga, T. Arita, S. Shirai, K. Kondo, K. Ando, K. Sakai, M. Goya, Y. Takabatake, S. Sonoda, H. Yokoi, F. Toyota, H. Nosaka, and M. Nobuyoshi. Incidence and clinical impact of stent fracture after everolimus-eluting stent implantation. Circ. Cardiovasc. Interv. 5:663–671, 2012. https://doi.org/10.1161/CIRCINTERVENTIONS.112.969238.

    Article  Google Scholar 

  33. Lee, M. S., D. Jurewitz, J. Aragon, J. Forrester, R. R. Makkar, and S. Kar. Stent fracture associated with drug-eluting stents: clinical characteristics and implications. Catheter Cardiovasc. Interv. 69:387–394, 2007. https://doi.org/10.1002/ccd.20942.

    Article  Google Scholar 

  34. Lee, S.-H., J.-S. Park, D.-G. Shin, Y.-J. Kim, G.-R. Hong, W. Kim, and B.-S. Shim. Frequency of stent fracture as a cause of coronary restenosis after sirolimus-eluting stent implantation. Am. J. Cardiol. 100:627–630, 2007. https://doi.org/10.1016/j.amjcard.2007.03.073.

    Article  Google Scholar 

  35. Lemos, P. A., F. Saia, J. M. R. Ligthart, C. A. Arampatzis, G. Sianos, K. Tanabe, A. Hoye, M. Degertekin, J. Daemen, E. McFadden, S. Hofma, P. C. Smits, P. de Feyter, W. J. van der Giessen, R. T. van Domburg, and P. W. Serruys. Coronary restenosis after sirolimus-eluting stent implantation. Circulation 108:257–260, 2003. https://doi.org/10.1161/01.CIR.0000083366.33686.11.

    Article  Google Scholar 

  36. Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessel. 25:333–337, 2010. https://doi.org/10.1007/s00380-009-1203-9.

    Article  Google Scholar 

  37. Lim, D., S.-K. Cho, W.-P. Park, A. Kristensson, J.-Y. Ko, S. Al-Hassani, and H.-S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36:1118–1129, 2008. https://doi.org/10.1007/s10439-008-9504-1.

    Article  Google Scholar 

  38. Lim, H. B., G. Hur, S. Y. Kim, Y. H. Kim, S. U. Kwon, W. R. Lee, and S. J. Cha. Coronary stent fracture: detection with 64-section multidetector CT angiography in patients and in vitro. Radiology 249:810–819, 2008. https://doi.org/10.1148/radiol.2493088035.

    Article  Google Scholar 

  39. Liu, K. C. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. In: Advances in multiaxial fatigue, edited by D. L. McDowell, and R. Ellis. Philadelphia: ASTM International, 1993, pp. 120–130.

    Google Scholar 

  40. Lu, H., R. J. De Winter, and K. T. Koch. The STENTYS self-apposing stent technology in coronary artery disease: literature review and future directions. Expert Rev. Med. Dev. 15:479–487, 2018. https://doi.org/10.1080/17434440.2018.1491305.

    Article  Google Scholar 

  41. Makaryus, A., L. Lefkowitz, and A. Lee. Coronary artery stent fracture. Int. J. Cardiovasc. Imaging 23:305–309, 2007. https://doi.org/10.1007/s10554-006-9151-2.

    Article  Google Scholar 

  42. Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000, 2006. https://doi.org/10.1016/j.biomaterials.2005.10.012.

    Article  Google Scholar 

  43. Min, P.-K., Y.-W. Yoon, and H. Moon Kwon. Delayed strut fracture of sirolimus-eluting stent: a significant problem or an occasional observation? Int. J. Cardiol. 106:404–406, 2006. https://doi.org/10.1016/j.ijcard.2004.12.087.

    Article  Google Scholar 

  44. Mohsen, M. K., A. Alqahtani, and J. Al Suwaidi. Stent fracture: how frequently is it recognized? Heart Views 14:72–81, 2013. https://doi.org/10.4103/1995-705X.115501.

    Article  Google Scholar 

  45. Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 47:899–907, 2014. https://doi.org/10.1016/j.jbiomech.2014.01.007.

    Article  Google Scholar 

  46. Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, F. D. Kolodgie, and R. Virmani. Incidence and predictors of drug-eluting stent fracture in human coronary artery. A pathologic analysis. J. Am. Coll. Cardiol. 54:1924–1931, 2009. https://doi.org/10.1016/j.jacc.2009.05.075.

    Article  Google Scholar 

  47. Okumura, M., Y. Ozaki, J. Ishii, S. Kan, H. Naruse, S. Matsui, M. Ishikawa, K. Hattori, T. Gochi, T. Nakano, A. Yamada, S. Kato, S. Motoyama, M. Sarai, Y. Takagi, T. F. Ismail, M. Nomura, and H. Hishida. Restenosis and stent fracture following sirolimus-eluting stent (SES) implantation. Circ. J. Off. J. Jpn. Circ. Soc. 71:1669–1677, 2007.

    Google Scholar 

  48. Onuma, Y., P. W. Serruys, T. Muramatsu, S. Nakatani, R.-J. van Geuns, B. de Bruyne, D. Dudek, E. Christiansen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, H. M. Garcia-Garcia, S. Veldhof, R. Rapoza, and J. A. Ormiston. Incidence and imaging outcomes of acute scaffold disruption and late structural discontinuity after implantation of the absorb everolimus-eluting fully bioresorbable vascular scaffold: optical coherence tomography assessment in the ABSORB Cohort B Trial. JACC Cardiovasc. Interv. 7:1400–1411, 2014. https://doi.org/10.1016/j.jcin.2014.06.016.

    Article  Google Scholar 

  49. Ormiston, J. A., B. Webber, B. Ubod, J. White, and M. W. I. Webster. Coronary stent durability and fracture: an independent bench comparison of six contemporary designs using a repetitive bend test. EuroIntervention 10:1449–1455, 2015. https://doi.org/10.4244/EIJY14M11_08.

    Article  Google Scholar 

  50. Paris, P., and F. Erdogan. A critical analysis of crack propagation laws. J. Basic Eng. 85:528–533, 1963. https://doi.org/10.1115/1.3656900.

    Article  Google Scholar 

  51. Park, J.-S., I.-H. Cho, and Y.-J. Kim. Stent fracture and restenosis after zotarolimus-eluting stent implantation. Int. J. Cardiol. 147:e29–e31, 2011. https://doi.org/10.1016/j.ijcard.2009.01.030.

    Article  Google Scholar 

  52. Popma, J. J., K. Tiroch, A. Almonacid, S. Cohen, D. E. Kandzari, and M. B. Leon. A qualitative and quantitative angiographic analysis of stent fracture late following sirolimus-eluting stent implantation. Am. J. Cardiol. 103:923–929, 2009. https://doi.org/10.1016/j.amjcard.2008.12.022.

    Article  Google Scholar 

  53. Puricel, S., F. Cuculi, M. Weissner, A. Schmermund, P. Jamshidi, T. Nyffenegger, H. Binder, H. Eggebrecht, T. Münzel, S. Cook, and T. Gori. Bioresorbable coronary scaffold thrombosis. J. Am. Coll. Cardiol. 67:921–931, 2016. https://doi.org/10.1016/j.jacc.2015.12.019.

    Article  Google Scholar 

  54. Shaikh, F., R. Maddikunta, M. Djelmami-Hani, J. Solis, S. Allaqaband, and T. Bajwa. Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis? Catheter Cardiovasc. Interv. 71:614–618, 2008. https://doi.org/10.1002/ccd.21371.

    Article  Google Scholar 

  55. Sianos, G., S. Hofma, J. M. R. Ligthart, F. Saia, A. Hoye, P. A. Lemos, and P. W. Serruys. Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc. Interv. 61:111–116, 2004. https://doi.org/10.1002/ccd.10709.

    Article  Google Scholar 

  56. Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012. https://doi.org/10.1016/j.ijfatigue.2012.04.022.

    Article  Google Scholar 

  57. Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J. Mech. Behav. Biomed. Mater. 46:244–260, 2015. https://doi.org/10.1016/j.jmbbm.2015.02.011.

    Article  Google Scholar 

  58. Sweeney, C. A., B. O’Brien, P. E. McHugh, and S. B. Leen. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48, 2014. https://doi.org/10.1016/j.biomaterials.2013.09.087.

    Article  Google Scholar 

  59. Umeda, H., T. Gochi, M. Iwase, H. Izawa, T. Shimizu, R. Ishiki, H. Inagaki, J. Toyama, M. Yokota, and T. Murohara. Frequency, predictors and outcome of stent fracture after sirolimus-eluting stent implantation. Int. J. Cardiol. 133:321–326, 2009. https://doi.org/10.1016/j.ijcard.2007.12.067.

    Article  Google Scholar 

  60. Waksman, R., R. Pakala, R. Baffour, R. Seabron, D. Hellinga, and F. O. Tio. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J. Interv. Cardiol. 21:15–20, 2008. https://doi.org/10.1111/j.1540-8183.2007.00319.x.

    Article  Google Scholar 

  61. Wang, P.-J., N. Ferralis, C. Conway, J. C. Grossman, and E. R. Edelman. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc. Natl. Acad. Sci. USA 115:2640–2645, 2018. https://doi.org/10.1073/pnas.1716420115.

    Article  Google Scholar 

  62. Wiktor, D. M., S. W. Waldo, and E. J. Armstrong. Coronary stent failure: fracture, compression, recoil, and prolapse. Interv. Cardiol. Clin. 5:405–414, 2016. https://doi.org/10.1016/J.ICCL.2016.03.004.

    Google Scholar 

  63. Wu, M.-C., C.-C. Cheng, and T.-Y. Huang. Fracture of zotarolimus-eluting stent after implantation. Texas Hear. Inst. J. 36:618–620, 2009.

    Google Scholar 

  64. Yagi, S., T. Kimura, I. Hayashi, and T. Nishiuchi. Acute coronary syndrome due to hinge movement of a bare-metal stent. Int. J. Cardiol. 123:e64–e66, 2008. https://doi.org/10.1016/j.ijcard.2007.01.002.

    Article  Google Scholar 

  65. Yamada, K. P., T. Koizumi, H. Yamaguchi, H. Kaneda, H. N. Bonneau, Y. Honda, and P. J. Fitzgerald. Serial angiographic and intravascular ultrasound analysis of late stent strut fracture of sirolimus-eluting stents in native coronary arteries. Int. J. Cardiol. 130:255–259, 2008. https://doi.org/10.1016/j.ijcard.2007.08.082.

    Article  Google Scholar 

  66. Yang, T.-H., D.-I. Kim, S.-G. Park, J.-S. Seo, H.-J. Cho, S.-H. Seol, S.-M. Kim, D.-K. Kim, and D.-S. Kim. Clinical characteristics of stent fracture after sirolimus-eluting stent implantation. Int. J. Cardiol. 131:212–216, 2009. https://doi.org/10.1016/j.ijcard.2007.10.059.

    Article  Google Scholar 

Download references

Conflict of interest

Conway declares that she has no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Conway.

Additional information

Associate Editors Dr. David A. Steinman, Dr. Francesco Migliavacca, and Dr. Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conway, C. Coronary Stent Fracture: Clinical Evidence Vs. the Testing Paradigm. Cardiovasc Eng Tech 9, 752–760 (2018). https://doi.org/10.1007/s13239-018-00384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-00384-0

Keywords

Navigation