Experimental Study of Right Ventricular Hemodynamics After Tricuspid Valve Replacement Therapies to Treat Tricuspid Regurgitation

Abstract

The increased understanding of right heart diseases has led to more aggressive interventions to manage functional tricuspid regurgitation (FTR). In some cases of FTR, prosthetic valve replacement is typically considered when concomitant organic components or significant geometrical distortions are involved in the pathology of the tricuspid valve. However, little is known of the performance of current devices in the right heart circulation. In this study, a novel in vitro mock circulatory system that incorporated a realistic tricuspid valve apparatus in a patient-specific silicon right ventricle (RV) was designed and fabricated. The system was calibrated to emulate severe FTR, enabling the investigation of RV hemodynamics in pre- and post-implantation of tri-leaflet tissue implant and bi-leaflet mechanical implant. 2D particle imaging velocimetry was performed to visualize flow and quantify relevant hemodynamic parameters. While our results showed all prosthetic implants improved cardiac output, these implants also subjected the RV to increased turbulence level. Our study also revealed that the implants did not create the optimal behavior of fluid transfer in the RV as we expected. Among the implants tested, tissue implant created the most dominant vortices, which persisted throughout diastole; its observed strong negative vortex could lead to increase energy expenditure due to undesired fluid direction. In contrast, both native valve and mechanical implant had both weaker vortex formation as well as more significant vortex dissipation. Interestingly, the vortex dissipation of native valve was associated with streamlined flow pattern that tended towards the pulmonary outlet, while the mechanical implant generated more regions of flow stagnation within the RV. These findings heighten the imperative to improve designs of current heart valves to be used in the right circulation.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Abbreviations

FTR:

Functional tricuspid regurgitation

LV:

Left ventricle

PIV:

Particle imaging velocimetry

PRSS:

Principal Reynolds shear stress

RV:

Right ventricle

TKE:

Turbulence kinetic energy

TR:

Tricuspid regurgitation

TV:

Tricuspid valve

VSS:

Viscous shear stress

References

  1. 1.

    Allen, H. D., D. J. Driscoll, R. E. Shaddy, and T. F. Feltes. Moss & Adams’ Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult. Philadelphia: Lippincott Williams & Wilkins, 2013.

    Google Scholar 

  2. 2.

    Bermejo, J., P. Martínez-Legazpi, and J. C. del Álamo. The clinical assessment of intraventricular flows. Ann. Rev. Fluid Mech. 47:315–342, 2015.

    Article  Google Scholar 

  3. 3.

    Bruce, C. J., and H. M. Connolly. Right-sided valve disease deserves a little more respect. Circulation 119(20):2726–2734, 2009. doi:10.1161/CIRCULATIONAHA.108.776021.

    Article  Google Scholar 

  4. 4.

    Cho, W. C., C. B. Park, J. B. Kim, S. H. Jung, C. H. Chung, S. J. Choo, et al. Mechanical valve replacement versus bioprosthetic valve replacement in the tricuspid valve position. J. Card. Surg. 28(3):212–217, 2013. doi:10.1111/jocs.12093.

    Article  Google Scholar 

  5. 5.

    Cohen, G. I., M. White, R. A. Sochowski, A. L. Klein, P. D. Bridge, W. J. Stewart, et al. Reference values for normal adult transesophageal echocardiographic measurements. J. Am. Soc. Echocardiogr. 8(3):221–230, 1995.

    Article  Google Scholar 

  6. 6.

    Faludi, R., M. Szulik, J. D’hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139(6):1501–1510, 2010.

    Article  Google Scholar 

  7. 7.

    Fredriksson, A. G., J. Zajac, J. Eriksson, P. Dyverfeldt, A. F. Bolger, T. Ebbers, et al. 4-D blood flow in the human right ventricle. Am. J. Physiol. Heart Circ. Physiol. 301(6):H2344–2350, 2011. doi:10.1152/ajpheart.00622.2011.

    Article  Google Scholar 

  8. 8.

    Goetz, W. A., K. H. Lim, R. Ibled, N. Grousson, S. L. H. Salgues, and J. H. Yeo. Forces at single point attached commissures (SPAC) in pericardial aortic valve prosthesis. Eur. J. Cardio-Thorac. Surg. 29(2):150–155, 2006.

    Article  Google Scholar 

  9. 9.

    Haller, G. An objective definition of a vortex. J. Fluid Mech. 525:1–26, 2005.

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Hunt, J. C., A. A. Wray, and P. Moin. Eddies, streams, and convergence zones in turbulent flows. 1988.

  11. 11.

    Ikeda, K., Y. Okazaki, K. Furukawa, S. Ohtsubo, J. Yunoki, M. Natsuaki, et al. Direct imaging of bileaflet mechanical valve behavior in the tricuspid position. Eur. J. Cardiothorac. Surg. 29(6):1014–1019, 2006. doi:10.1016/j.ejcts.2006.02.052.

    Article  Google Scholar 

  12. 12.

    Iscan, Z. H., K. M. Vural, I. Bahar, L. Mavioglu, and A. Saritas. What to expect after tricuspid valve replacement? Long-term results. Eur. J. Cardio-Thorac. Surg. 32(2):296–300, 2007.

    Article  Google Scholar 

  13. 13.

    Ismail, M., F. Kabinejadian, Y. N. Nguyen, E. Tay, S. Kim, and H. L. Leo. In vitro investigation of the hemodynamics of transcatheter heterotopic valves implantation in the cavo-atrial junction. Artif. Organs 39(9):803–814, 2015. doi:10.1111/aor.12457.

    Article  Google Scholar 

  14. 14.

    Kaplan, M., M. S. Kut, M. M. Demirtas, S. Cimen, and A. Ozler. Prosthetic replacement of tricuspid valve: bioprosthetic or mechanical. Ann. Thorac. Surg. 73(2):467–473, 2002.

    Article  Google Scholar 

  15. 15.

    Kawano, H., T. Oda, S. Fukunaga, E. Tayama, T. Kawara, A. Oryoji, et al. Tricuspid valve replacement with the St. Jude Medical valve: 19 years of experience. Eur. J. Cardiothorac. Surg. 18(5):565–569, 2000.

    Article  Google Scholar 

  16. 16.

    Lancellotti, P., L. Moura, L. A. Pierard, E. Agricola, B. A. Popescu, C. Tribouilloy, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur. J. Echocardiogr. 11(4):307–332, 2010. doi:10.1093/ejechocard/jeq031.

    Article  Google Scholar 

  17. 17.

    Leo, H. L. An in vitro investigation of the flow fields through bileaflet and polymeric prosthetic heart valves. 2005.

  18. 18.

    Leo, H. L., L. P. Dasi, J. Carberry, H. A. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34(6):936–952, 2006.

    Article  Google Scholar 

  19. 19.

    Leo, H.-L., H. Simon, J. Carberry, S.-C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33(4):429–443, 2005.

    Article  Google Scholar 

  20. 20.

    Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12(3):257–273, 1972. doi:10.1016/S0006-3495(72)86085-5.

    Article  Google Scholar 

  21. 21.

    Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.

    Article  Google Scholar 

  22. 22.

    Mächler, H., M. Perthel, G. Reiter, U. Reiter, M. Zink, P. Bergmann, et al. Influence of bileafletprosthetic mitral valve orientation on left ventricular flow—anexperimental in vivo magnetic resonance imagingstudy. Eur. J. Cardio-Thorac. Surg. 26(4):747–753, 2004.

    Article  Google Scholar 

  23. 23.

    Mangual, J. O., F. Domenichini, and G. Pedrizzetti. Describing the highly three dimensional Right Ventricle flow. Ann. Biomed. Eng. 40(8):1790–1801, 2012. doi:10.1007/s10439-012-0540-5.

    Article  Google Scholar 

  24. 24.

    Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7, 2011. doi:10.1186/1532-429X-13-7.

    Article  Google Scholar 

  25. 25.

    Martinez-Legazpi, P., J. Bermejo, Y. Benito, R. Yotti, C. Perez Del Villar, A. Gonzalez-Mansilla, et al. Contribution of the diastolic vortex ring to left ventricular filling. J. Am. Coll. Cardiol. 64(16):1711–1721, 2014. doi:10.1016/j.jacc.2014.06.1205.

    Article  Google Scholar 

  26. 26.

    Messing, B., S. Porat, T. Imbar, D. Valsky, E. Anteby, and S. Yagel. Mild tricuspid regurgitation: a benign fetal finding at various stages of pregnancy. Ultrasound Obstet. Gynecol. 26(6):606–610, 2005.

    Article  Google Scholar 

  27. 27.

    Murphy, D. W. The application of passive flow control to bileaflet mechanical heart valve leakage jets. 2009.

  28. 28.

    Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95(10):108101, 2005. doi:10.1103/PhysRevLett.95.108101.

    Article  Google Scholar 

  29. 29.

    Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38(3):769–773, 2010. doi:10.1007/s10439-010-9928-2.

    Article  Google Scholar 

  30. 30.

    Pedrizzetti, G., G. La Canna, O. Alfieri, and G. Tonti. The vortex–an early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 11(9):545–553, 2014. doi:10.1038/nrcardio.2014.75.

    Article  Google Scholar 

  31. 31.

    Raja, S. G., and G. D. Dreyfus. Surgery for functional tricuspid regurgitation: current techniques, outcomes and emerging concepts. Expert. Rev. Cardiovasc. Ther. 7(1):73–84, 2009. doi:10.1586/14779072.7.1.73.

    Article  Google Scholar 

  32. 32.

    Rizzoli, G., I. Vendramin, G. Nesseris, T. Bottio, C. Guglielmi, and L. Schiavon. Biological or mechanical prostheses in tricuspid position? A meta-analysis of intra-institutional results. Ann. Thorac. Surg. 77(5):1607–1614, 2004. doi:10.1016/j.athoracsur.2003.10.015.

    Article  Google Scholar 

  33. 33.

    Rodes-Cabau, J., M. Taramasso, and P. T. O’Gara. Diagnosis and treatment of tricuspid valve disease: current and future perspectives. Lancet 2016. doi:10.1016/S0140-6736(16)00740-6.

    Google Scholar 

  34. 34.

    Saikrishnan, N., C.-H. Yap, N. C. Milligan, N. V. Vasilyev, and A. P. Yoganathan. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40(8):1760–1775, 2012.

    Article  Google Scholar 

  35. 35.

    Sengupta, P. P., and J. Narula. RV form and function: a piston pump, vortex impeller, or hydraulic ram? JACC Cardiovasc. Imaging 6(5):636–639, 2013. doi:10.1016/j.jcmg.2013.04.003.

    Article  Google Scholar 

  36. 36.

    Shiran, A., and A. Sagie. Tricuspid regurgitation in mitral valve disease. J. Am. Coll. Cardiol. 53(5):401–408, 2009.

    Article  Google Scholar 

  37. 37.

    Songur, C. M., E. Simsek, A. Ozen, S. Kocabeyoglu, and T. A. Donmez. Long term results comparing mechanical and biological prostheses in the tricuspid valve position: which valve types are better–mechanical or biological prostheses? Heart Lung Circ. 23(12):1175–1178, 2014. doi:10.1016/j.hlc.2014.05.015.

    Article  Google Scholar 

  38. 38.

    Starck, C. T., J. Kempfert, and V. Falk. Tricuspid valve interventions: surgical techniques and outcomes. EuroIntervention 11(Suppl W):W128–W132, 2015. doi:10.4244/EIJV11SWA36.

    Article  Google Scholar 

  39. 39.

    Van Nooten, G. J., F. Caes, Y. Taeymans, Y. Van Belleghem, K. Francois, D. De Bacquer, et al. Tricuspid valve replacement: postoperative and long-term results. J. Thorac. Cardiovasc. Surg. 110(3):672–679, 1995. doi:10.1016/S0022-5223(95)70098-6.

    Article  Google Scholar 

  40. 40.

    Witschey, W. R., D. Zhang, F. Contijoch, J. R. McGarvey, M. Lee, S. Takebayashi, et al. The influence of mitral annuloplasty on left ventricular flow dynamics. Ann. Thorac. Surg. 100(1):114–121, 2015. doi:10.1016/j.athoracsur.2015.02.028.

    Article  Google Scholar 

Download references

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hwa Liang Leo.

Additional information

Associate Editor Ulrich Steinseifer oversaw the review of this article.

Appendix

Appendix

See Figs 10 and 11.

Figure 10
figure10

Velocity vector field of the valves at late systole (Q = 0).

Figure 11
figure11

TKE contour plots of the valves at four main time points.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Y.N., Ismail, M., Kabinejadian, F. et al. Experimental Study of Right Ventricular Hemodynamics After Tricuspid Valve Replacement Therapies to Treat Tricuspid Regurgitation. Cardiovasc Eng Tech 8, 401–418 (2017). https://doi.org/10.1007/s13239-017-0328-8

Download citation

Keywords

  • Bioprosthetic valve
  • Functional tricuspid regurgitation
  • Hemodynamics
  • Mechanical valve
  • Right ventricle
  • Tricuspid valve
  • Valve replacement
  • Vortex
  • Prosthetic valve