Advertisement

Cardiovascular Engineering and Technology

, Volume 8, Issue 4, pp 401–418 | Cite as

Experimental Study of Right Ventricular Hemodynamics After Tricuspid Valve Replacement Therapies to Treat Tricuspid Regurgitation

  • Yen Ngoc Nguyen
  • Munirah Ismail
  • Foad Kabinejadian
  • Chi Wei Ong
  • Edgar Lik Wui Tay
  • Hwa Liang Leo
Article
  • 286 Downloads

Abstract

The increased understanding of right heart diseases has led to more aggressive interventions to manage functional tricuspid regurgitation (FTR). In some cases of FTR, prosthetic valve replacement is typically considered when concomitant organic components or significant geometrical distortions are involved in the pathology of the tricuspid valve. However, little is known of the performance of current devices in the right heart circulation. In this study, a novel in vitro mock circulatory system that incorporated a realistic tricuspid valve apparatus in a patient-specific silicon right ventricle (RV) was designed and fabricated. The system was calibrated to emulate severe FTR, enabling the investigation of RV hemodynamics in pre- and post-implantation of tri-leaflet tissue implant and bi-leaflet mechanical implant. 2D particle imaging velocimetry was performed to visualize flow and quantify relevant hemodynamic parameters. While our results showed all prosthetic implants improved cardiac output, these implants also subjected the RV to increased turbulence level. Our study also revealed that the implants did not create the optimal behavior of fluid transfer in the RV as we expected. Among the implants tested, tissue implant created the most dominant vortices, which persisted throughout diastole; its observed strong negative vortex could lead to increase energy expenditure due to undesired fluid direction. In contrast, both native valve and mechanical implant had both weaker vortex formation as well as more significant vortex dissipation. Interestingly, the vortex dissipation of native valve was associated with streamlined flow pattern that tended towards the pulmonary outlet, while the mechanical implant generated more regions of flow stagnation within the RV. These findings heighten the imperative to improve designs of current heart valves to be used in the right circulation.

Keywords

Bioprosthetic valve Functional tricuspid regurgitation Hemodynamics Mechanical valve Right ventricle Tricuspid valve Valve replacement Vortex Prosthetic valve 

Abbreviations

FTR

Functional tricuspid regurgitation

LV

Left ventricle

PIV

Particle imaging velocimetry

PRSS

Principal Reynolds shear stress

RV

Right ventricle

TKE

Turbulence kinetic energy

TR

Tricuspid regurgitation

TV

Tricuspid valve

VSS

Viscous shear stress

Notes

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Allen, H. D., D. J. Driscoll, R. E. Shaddy, and T. F. Feltes. Moss & Adams’ Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult. Philadelphia: Lippincott Williams & Wilkins, 2013.Google Scholar
  2. 2.
    Bermejo, J., P. Martínez-Legazpi, and J. C. del Álamo. The clinical assessment of intraventricular flows. Ann. Rev. Fluid Mech. 47:315–342, 2015.CrossRefGoogle Scholar
  3. 3.
    Bruce, C. J., and H. M. Connolly. Right-sided valve disease deserves a little more respect. Circulation 119(20):2726–2734, 2009. doi: 10.1161/CIRCULATIONAHA.108.776021.CrossRefGoogle Scholar
  4. 4.
    Cho, W. C., C. B. Park, J. B. Kim, S. H. Jung, C. H. Chung, S. J. Choo, et al. Mechanical valve replacement versus bioprosthetic valve replacement in the tricuspid valve position. J. Card. Surg. 28(3):212–217, 2013. doi: 10.1111/jocs.12093.CrossRefGoogle Scholar
  5. 5.
    Cohen, G. I., M. White, R. A. Sochowski, A. L. Klein, P. D. Bridge, W. J. Stewart, et al. Reference values for normal adult transesophageal echocardiographic measurements. J. Am. Soc. Echocardiogr. 8(3):221–230, 1995.CrossRefGoogle Scholar
  6. 6.
    Faludi, R., M. Szulik, J. D’hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139(6):1501–1510, 2010.CrossRefGoogle Scholar
  7. 7.
    Fredriksson, A. G., J. Zajac, J. Eriksson, P. Dyverfeldt, A. F. Bolger, T. Ebbers, et al. 4-D blood flow in the human right ventricle. Am. J. Physiol. Heart Circ. Physiol. 301(6):H2344–2350, 2011. doi: 10.1152/ajpheart.00622.2011.CrossRefGoogle Scholar
  8. 8.
    Goetz, W. A., K. H. Lim, R. Ibled, N. Grousson, S. L. H. Salgues, and J. H. Yeo. Forces at single point attached commissures (SPAC) in pericardial aortic valve prosthesis. Eur. J. Cardio-Thorac. Surg. 29(2):150–155, 2006.CrossRefGoogle Scholar
  9. 9.
    Haller, G. An objective definition of a vortex. J. Fluid Mech. 525:1–26, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hunt, J. C., A. A. Wray, and P. Moin. Eddies, streams, and convergence zones in turbulent flows. 1988.Google Scholar
  11. 11.
    Ikeda, K., Y. Okazaki, K. Furukawa, S. Ohtsubo, J. Yunoki, M. Natsuaki, et al. Direct imaging of bileaflet mechanical valve behavior in the tricuspid position. Eur. J. Cardiothorac. Surg. 29(6):1014–1019, 2006. doi: 10.1016/j.ejcts.2006.02.052.CrossRefGoogle Scholar
  12. 12.
    Iscan, Z. H., K. M. Vural, I. Bahar, L. Mavioglu, and A. Saritas. What to expect after tricuspid valve replacement? Long-term results. Eur. J. Cardio-Thorac. Surg. 32(2):296–300, 2007.CrossRefGoogle Scholar
  13. 13.
    Ismail, M., F. Kabinejadian, Y. N. Nguyen, E. Tay, S. Kim, and H. L. Leo. In vitro investigation of the hemodynamics of transcatheter heterotopic valves implantation in the cavo-atrial junction. Artif. Organs 39(9):803–814, 2015. doi: 10.1111/aor.12457.CrossRefGoogle Scholar
  14. 14.
    Kaplan, M., M. S. Kut, M. M. Demirtas, S. Cimen, and A. Ozler. Prosthetic replacement of tricuspid valve: bioprosthetic or mechanical. Ann. Thorac. Surg. 73(2):467–473, 2002.CrossRefGoogle Scholar
  15. 15.
    Kawano, H., T. Oda, S. Fukunaga, E. Tayama, T. Kawara, A. Oryoji, et al. Tricuspid valve replacement with the St. Jude Medical valve: 19 years of experience. Eur. J. Cardiothorac. Surg. 18(5):565–569, 2000.CrossRefGoogle Scholar
  16. 16.
    Lancellotti, P., L. Moura, L. A. Pierard, E. Agricola, B. A. Popescu, C. Tribouilloy, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur. J. Echocardiogr. 11(4):307–332, 2010. doi: 10.1093/ejechocard/jeq031.CrossRefGoogle Scholar
  17. 17.
    Leo, H. L. An in vitro investigation of the flow fields through bileaflet and polymeric prosthetic heart valves. 2005.Google Scholar
  18. 18.
    Leo, H. L., L. P. Dasi, J. Carberry, H. A. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34(6):936–952, 2006.CrossRefGoogle Scholar
  19. 19.
    Leo, H.-L., H. Simon, J. Carberry, S.-C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33(4):429–443, 2005.CrossRefGoogle Scholar
  20. 20.
    Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12(3):257–273, 1972. doi: 10.1016/S0006-3495(72)86085-5.CrossRefGoogle Scholar
  21. 21.
    Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.CrossRefGoogle Scholar
  22. 22.
    Mächler, H., M. Perthel, G. Reiter, U. Reiter, M. Zink, P. Bergmann, et al. Influence of bileafletprosthetic mitral valve orientation on left ventricular flow—anexperimental in vivo magnetic resonance imagingstudy. Eur. J. Cardio-Thorac. Surg. 26(4):747–753, 2004.CrossRefGoogle Scholar
  23. 23.
    Mangual, J. O., F. Domenichini, and G. Pedrizzetti. Describing the highly three dimensional Right Ventricle flow. Ann. Biomed. Eng. 40(8):1790–1801, 2012. doi: 10.1007/s10439-012-0540-5.CrossRefGoogle Scholar
  24. 24.
    Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7, 2011. doi: 10.1186/1532-429X-13-7.CrossRefGoogle Scholar
  25. 25.
    Martinez-Legazpi, P., J. Bermejo, Y. Benito, R. Yotti, C. Perez Del Villar, A. Gonzalez-Mansilla, et al. Contribution of the diastolic vortex ring to left ventricular filling. J. Am. Coll. Cardiol. 64(16):1711–1721, 2014. doi: 10.1016/j.jacc.2014.06.1205.CrossRefGoogle Scholar
  26. 26.
    Messing, B., S. Porat, T. Imbar, D. Valsky, E. Anteby, and S. Yagel. Mild tricuspid regurgitation: a benign fetal finding at various stages of pregnancy. Ultrasound Obstet. Gynecol. 26(6):606–610, 2005.CrossRefGoogle Scholar
  27. 27.
    Murphy, D. W. The application of passive flow control to bileaflet mechanical heart valve leakage jets. 2009.Google Scholar
  28. 28.
    Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95(10):108101, 2005. doi: 10.1103/PhysRevLett.95.108101.CrossRefGoogle Scholar
  29. 29.
    Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38(3):769–773, 2010. doi: 10.1007/s10439-010-9928-2.CrossRefGoogle Scholar
  30. 30.
    Pedrizzetti, G., G. La Canna, O. Alfieri, and G. Tonti. The vortex–an early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 11(9):545–553, 2014. doi: 10.1038/nrcardio.2014.75.CrossRefGoogle Scholar
  31. 31.
    Raja, S. G., and G. D. Dreyfus. Surgery for functional tricuspid regurgitation: current techniques, outcomes and emerging concepts. Expert. Rev. Cardiovasc. Ther. 7(1):73–84, 2009. doi: 10.1586/14779072.7.1.73.CrossRefGoogle Scholar
  32. 32.
    Rizzoli, G., I. Vendramin, G. Nesseris, T. Bottio, C. Guglielmi, and L. Schiavon. Biological or mechanical prostheses in tricuspid position? A meta-analysis of intra-institutional results. Ann. Thorac. Surg. 77(5):1607–1614, 2004. doi: 10.1016/j.athoracsur.2003.10.015.CrossRefGoogle Scholar
  33. 33.
    Rodes-Cabau, J., M. Taramasso, and P. T. O’Gara. Diagnosis and treatment of tricuspid valve disease: current and future perspectives. Lancet 2016. doi: 10.1016/S0140-6736(16)00740-6.Google Scholar
  34. 34.
    Saikrishnan, N., C.-H. Yap, N. C. Milligan, N. V. Vasilyev, and A. P. Yoganathan. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40(8):1760–1775, 2012.CrossRefGoogle Scholar
  35. 35.
    Sengupta, P. P., and J. Narula. RV form and function: a piston pump, vortex impeller, or hydraulic ram? JACC Cardiovasc. Imaging 6(5):636–639, 2013. doi: 10.1016/j.jcmg.2013.04.003.CrossRefGoogle Scholar
  36. 36.
    Shiran, A., and A. Sagie. Tricuspid regurgitation in mitral valve disease. J. Am. Coll. Cardiol. 53(5):401–408, 2009.CrossRefGoogle Scholar
  37. 37.
    Songur, C. M., E. Simsek, A. Ozen, S. Kocabeyoglu, and T. A. Donmez. Long term results comparing mechanical and biological prostheses in the tricuspid valve position: which valve types are better–mechanical or biological prostheses? Heart Lung Circ. 23(12):1175–1178, 2014. doi: 10.1016/j.hlc.2014.05.015.CrossRefGoogle Scholar
  38. 38.
    Starck, C. T., J. Kempfert, and V. Falk. Tricuspid valve interventions: surgical techniques and outcomes. EuroIntervention 11(Suppl W):W128–W132, 2015. doi: 10.4244/EIJV11SWA36.CrossRefGoogle Scholar
  39. 39.
    Van Nooten, G. J., F. Caes, Y. Taeymans, Y. Van Belleghem, K. Francois, D. De Bacquer, et al. Tricuspid valve replacement: postoperative and long-term results. J. Thorac. Cardiovasc. Surg. 110(3):672–679, 1995. doi: 10.1016/S0022-5223(95)70098-6.CrossRefGoogle Scholar
  40. 40.
    Witschey, W. R., D. Zhang, F. Contijoch, J. R. McGarvey, M. Lee, S. Takebayashi, et al. The influence of mitral annuloplasty on left ventricular flow dynamics. Ann. Thorac. Surg. 100(1):114–121, 2015. doi: 10.1016/j.athoracsur.2015.02.028.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Yen Ngoc Nguyen
    • 1
  • Munirah Ismail
    • 1
  • Foad Kabinejadian
    • 2
  • Chi Wei Ong
    • 1
  • Edgar Lik Wui Tay
    • 3
  • Hwa Liang Leo
    • 1
  1. 1.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Department of CardiologyNational University Heart CentreSingaporeSingapore

Personalised recommendations