Skip to main content
Log in

Local Hemodynamic Differences Between Commercially Available Y-Grafts and Traditional Fontan Baffles Under Simulated Exercise Conditions: Implications for Exercise Tolerance

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Fontan completion, resulting in a total cavopulmonary connection (TCPC), is accomplished using a lateral tunnel (LT), extracardiac conduit (ECC), or recently a bifurcated Y-graft. The local energetic differences between these graft types have not been substantially analyzed under exercise conditions. The present study evaluates the energetic performance of Y-grafts under simulated exercise conditions, compares their performance to the previous LT/ECC Fontan options, and discusses implications for exercise tolerance and hemodynamic predictability. Twenty Y-graft and 20 LT/ECC patients were analyzed. TCPC anatomies and flow waveforms were reconstructed using patient-specific cardiac magnetic resonance (CMR) images and phase-contrast CMR. Computational fluid dynamics simulations were performed to quantify indexed power loss (iPL) under both resting and simulated exercise conditions. Comparisons between graft types were investigated. iPL was significantly higher (p < 0.01) for Y-grafts at all activity levels. No significant interaction effects were observed between graft type and activity level. iPL at rest was strongly correlated (r 2 = 0.97, p < 0.001) with iPL at moderate exercise for Y-grafts, but less so for the LT/ECC cohort (r 2 = 0.66, p < 0.001). Similar results were seen for intense exercise, with a strong correlation for Y-grafts (r 2 = 0.94, p < 0.001) and a moderate correlation for LT/ECC (r 2 = 0.52, p < 0.001). Commercially available Y-grafts were found to have significantly higher iPL at all activity levels, suggesting worse exercise tolerance than the LT/ECC alternatives. Y-grafts offered impressive hemodynamic predictability which was not seen in the LT/ECC cohort. Our results encourage the further evaluation of an area-preserving Y-graft design to offer both improved energetic performance and hemodynamic predictability. Commercial Y-grafts show worse energetics, but more predictable responses than traditional Fontan connections under simulated exercise conditions. During simulated exercise conditions, commercially available Y-grafts show predictable but inferior energetic performance compared to lateral tunnel and extracardiac conduit Fontan connections, suggesting poorer exercise capacity. If Y-graft use is continued, these results encourage further evaluation of a cross sectional area-preserving Y-graft design as a additional alternative for Fontan completion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BSA:

Body surface area

CFD:

Computational fluid dynamics

CMR:

Cardiac magnetic resonance

ECC:

Extracardiac conduit

HLHS:

Hypoplastic left heart syndrome

iPL:

Indexed power loss

IVC:

Inferior vena cava

LPA:

Left pulmonary artery

LT:

Lateral tunnel

PA:

Pulmonary artery

PL:

Power loss

Qs:

Systemic flow

RPA:

Right pulmonary artery

SVC:

Superior vena cava

TCPC:

Total cavopulmonary connection

References

  1. Fontan, F., and E. Baudet. Surgical repair of tricuspid atresia. Thorax. 26(3):240–248, 1971. doi:10.1136/thx.26.3.240.

    Article  Google Scholar 

  2. Shah, M. J., J. Rychik, M. A. Fogel, J. D. Murphy, and M. L. Jacobs. Pulmonary AV malformations after superior cavopulmonary connection: resolution after inclusion of hepatic veins in the pulmonary circulation. Ann. Thorac. Surg. 63(4):960–963, 1997.

    Article  Google Scholar 

  3. Duncan, B. W., and S. Desai. Pulmonary arteriovenous malformations after cavopulmonary anastomosis. Ann. Thorac. Surg. 76(5):1759–1766, 2003. doi:10.1016/S0003-4975(03)00450-8.

    Article  Google Scholar 

  4. Trusty, P. M., M. Restrepo, K. R. Kanter, A. P. Yoganathan, M. A. Fogel, and T. C. Slesnick. A pulsatile hemodynamic evaluation of the commercially available bifurcated Y-graft Fontan modification and comparison with the lateral tunnel and extracardiac conduits. J. Thorac. Cardiovasc. Surg. 2016. doi:10.1016/j.jtcvs.2016.03.019.

    Article  Google Scholar 

  5. Restrepo, M., L. Mirabella, E. Tang, et al. Fontan pathway growth: a quantitative evaluation of lateral tunnel and extracardiac cavopulmonary connections using serial cardiac magnetic resonance. Ann. Thorac. Surg. 97(3):916–922, 2014. doi:10.1016/j.athoracsur.2013.11.015.

    Article  Google Scholar 

  6. Haggerty, C. M., M. Restrepo, E. Tang, et al. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J. Thorac. Cardiovasc. Surg. 148(4):1–10, 2013. doi:10.1016/j.jtcvs.2013.11.060.

    Article  Google Scholar 

  7. Tang, E., M. Restrepo, C. M. Haggerty, et al. Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc. Imaging. 7(3):215–224, 2014. doi:10.1016/j.jcmg.2013.12.010.

    Article  Google Scholar 

  8. Kanter, K. R., C. M. Haggerty, M. Restrepo, et al. Preliminary clinical experience with a bifurcated Y-graft Fontan procedure—a feasibility study. J. Thorac. Cardiovasc. Surg. 144(2):383–389, 2012. doi:10.1016/j.jtcvs.2012.05.015.

    Article  Google Scholar 

  9. Yang, W., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149(1):247–255, 2015. doi:10.1016/j.jtcvs.2014.08.069.

    Article  Google Scholar 

  10. Yang, W., J. A. Feinstein, S. C. Shadden, I. E. Vignon-Clementel, and A. L. Marsden. Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation. J. Biomech. Eng. 135(1):011002, 2013. doi:10.1115/1.4023089.

    Article  Google Scholar 

  11. Marsden, A. L., A. J. Bernstein, V. M. Reddy, et al. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137(2):394–403, 2009. doi:10.1016/j.jtcvs.2008.06.043.

    Article  Google Scholar 

  12. Pundi, K. N., J. N. Johnson, J. A. Dearani, et al. 40-Year follow-up after the Fontan operation long-term outcomes of 1,052 patients. J Am Coll Cardiol. 66(15):1700–1710, 2015. doi:10.1016/j.jacc.2015.07.065.

    Article  Google Scholar 

  13. Giardini, A., A. Hager, C. Pace Napoleone, and F. M. Picchio. Natural history of exercise capacity after the Fontan operation: a longitudinal study. Ann. Thorac. Surg. 85(3):818–821, 2008. doi:10.1016/j.athoracsur.2007.11.009.

    Article  Google Scholar 

  14. Driscoll, D. J., G. K. Danielson, F. J. Puga, H. V. Schaff, C. T. Heise, and B. A. Staats. Exercise tolerance and cardiorespiratory response to exercise after the Fontan operation for tricuspid atresia or functional single ventricle. J. Am. Coll. Cardiol. 7(5):1087–1094, 1986. doi:10.1016/S0735-1097(86)80227-3.

    Article  Google Scholar 

  15. Fredriksen, P. M., J. Therrien, G. Veldtman, et al. Lung function and aerobic capacity in adult patients following modi ed Fontan procedure. Society. 295–299, 2001.

  16. Paridon, S. M., P. D. Mitchell, S. D. Colan, et al. A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. J. Am. Coll. Cardiol. 52(2):99–107, 2008. doi:10.1016/j.jacc.2008.02.081.

    Article  Google Scholar 

  17. Ohuchi, H., J. Negishi, K. Noritake, et al. Prognostic value of exercise variables in 335 patients after the fontan operation: a 23-year single-center experience of cardiopulmonary exercise testing. Congenit. Heart Dis. 10(2):105–116, 2015. doi:10.1111/chd.12222.

    Article  Google Scholar 

  18. Gewillig, M. H., U. R. Lundström, J. E. Deanfield, et al. Impact of Fontan operation on left ventricular size and contractility in tricuspid atresia. Circulation. 81(1):118–127, 1990. doi:10.1161/01.CIR.81.1.118.

    Article  Google Scholar 

  19. Sluysmans, T., P. S. Sanders, M. Van Der Velde, et al. Natural history and patterns of recovery of contractile function in single left ventricle after Fontan operation. Circulation. 86:1753–1761, 1992.

    Article  Google Scholar 

  20. Rowe, S. A., K. G. Zahka, T. A. Manolio, P. J. Horneffer, and L. Kidd. Lung function and pulmonary regurgitation limit exercise capacity in postoperative tetralogy of Fallot. J. Am. Coll. Cardiol. 17(2):461–466, 1991. doi:10.1016/S0735-1097(10)80116-0.

    Article  Google Scholar 

  21. Grewal, J., R. B. Mccully, G. C. Kane, C. Lam, P. A. Pellikka, and Factors NY. Left ventricular function and exercise capacity. Jama 301(3):286–294, 2009.

    Article  Google Scholar 

  22. Lewis, G. D., R. Shah, K. Shahzad, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 116(14):1555–1562, 2007. doi:10.1161/CIRCULATIONAHA.107.716373.

    Article  Google Scholar 

  23. Whitehead, K. K., K. Pekkan, H. D. Kitajima, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 2007. doi:10.1161/CIRCULATIONAHA.106.680827.

    Article  Google Scholar 

  24. Khiabani, R. H., K. K. Whitehead, D. Han, et al. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart. 101(2):139–143, 2015. doi:10.1136/heartjnl-2014-306337.

    Article  Google Scholar 

  25. Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012. doi:10.1016/j.jtcvs.2011.06.042.

    Article  Google Scholar 

  26. Frakes, D. H., M. J. T. Smith, J. Parks, S. Sharma, S. M. Fogel, and A. P. Yoganathan. New techniques for the reconstruction of complex vascular anatomies from MRI images. J. Cardiovasc. Magn. Reson. 7(2):425–432, 2005. doi:10.1081/JCMR-200053637.

    Article  Google Scholar 

  27. Frakes, D. H., C. P. Conrad, T. M. Healy, et al. Application of an adaptive control grid interpolation technique to morphological vascular reconstruction. IEEE Trans. Biomed. Eng. 50(2):197–206, 2003. doi:10.1109/TBME.2002.807651.

    Article  Google Scholar 

  28. Frakes, D., M. Smith, D. de Zélicourt, K. Pekkan, and A. Yoganathan. Three-dimensional velocity field reconstruction. J. Biomech. Eng. 126(6):727, 2004. doi:10.1115/1.1824117.

    Article  Google Scholar 

  29. Sundareswaran, K. S., D. H. Frakes, M. A. Fogel, D. D. Soerensen, J. N. Oshinski, and A. P. Yoganathan. Optimum fuzzy filters for phase contrast MRI segmentation. J. Magn. Reson. Imaging. 29(1):155–165, 2009. doi:10.1002/jmri.21579.Optimum.

    Article  Google Scholar 

  30. De, Zélicourt D., L. Ge, C. Wang, F. Sotiropoulos, A. Gilmanov, and A. Yoganathan. Flow simulations in arbitrarily complex cardiovascular anatomies—an unstructured Cartesian grid approach. Comput. Fluids. 38(9):1749–1762, 2009. doi:10.1016/j.compfluid.2009.03.005.

    Article  MATH  Google Scholar 

  31. Wei, Z., K. K. Whitehead, R. H. Khiabani, et al. Respiratory effects on Fontan circulation during rest and exercise utilizing real time cardiac magnetic resonance imaging. Ann. Thorac. Surg. 2016. doi:10.1016/j.athoracsur.2015.11.011.

    Article  Google Scholar 

  32. Shachar, G. B., B. P. Fuhrman, Y. Wang, R. V. Lucas, and J. E. Lock. Rest and exercise hemodynamics after the Fontan procedure. Circulation. 65(6):1043–1048, 1982. doi:10.1161/01.CIR.65.6.1043.

    Article  Google Scholar 

  33. Gewillig, M. H., U. R. Lundström, C. Bull, R. K. H. Wyse, and J. E. Deanfield. Exercise responses in patients with congenital heart disease after Fontan repair: patterns and determinants of performance. J. Am. Coll. Cardiol. 15(6):1424–1432, 1990. doi:10.1016/S0735-1097(10)80034-8.

    Article  Google Scholar 

  34. Pedersen. E. M., E. V. Stenbøg, T. Fründ, et al. Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping. Heart. 2002;87(6):554–558. http://www.scopus.com/inward/record.url?eid=2-s2.0-0036110412&partnerID=40&md5=456e1f006941199d220e9a266922a150.

    Article  Google Scholar 

  35. Cheng, C. P., R. J. Herfkens, A. L. Lightner, C. A. Taylor, and J. A. Feinstein. Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise. Am. J. Physiol. Heart Circ. Physiol. 287(2):H921–H926, 2004. doi:10.1152/ajpheart.00022.2004.

    Article  Google Scholar 

  36. Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41(10):2246–2252, 2008. doi:10.1016/j.jbiomech.2008.04.011.

    Article  Google Scholar 

Download references

Funding

Mark Fogel has received funding through: Research Grant; Modest; NIH R01. Consultant/Advisory Board; Modest; Edwards Lifesciences - MRI Core Lab. Other; Modest; AMAG FACT trial site, Cooley’s Anemia Foundation MRI Core Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Ethics declarations

Conflict of Interest

None of the authors have potential conflicts of interest in relation to the presented work.

Human and Animal Rights

No animal studies were carried out by the authors for this article.

Ethical Approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all individual participants included in the study.

Additional information

Associate Editor Pedro del Nido oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trusty, P.M., Wei, Z., Tree, M. et al. Local Hemodynamic Differences Between Commercially Available Y-Grafts and Traditional Fontan Baffles Under Simulated Exercise Conditions: Implications for Exercise Tolerance. Cardiovasc Eng Tech 8, 390–399 (2017). https://doi.org/10.1007/s13239-017-0310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0310-5

Keywords

Navigation