Multiphysics Modeling of the Atrial Systole under Standard Ablation Strategies

Abstract

The aim of this study was to develop a computational framework to compare the impact of standard ablation concepts on the mechanical performance of the atria, since different line combinations cannot be applied in practice to the same patient. For this purpuse, we coupled electro-mechano-hemodynamic mathematical models based on biophysical principles and simulate the contractile performance of the atria. We computed systolic pressures and volumes in two patient-specific atrial geometries (one of normal size and one hypertrophied) with various ablation concepts. We found that our computational model is able to detect the differences in the left atrial contractility and ejection fraction for various electrical activation sequences resulting from different ablation line combinations. We show that multiphysics modeling has the potential to quantify the hemodynamic performance of left atria for different ablation lines, which could be used as additional pre-operative clinical information for the choice of the ablation concept in the future.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Abbreviations

LA:

Left atrium

AL:

Anterior line

AF:

Atrial fibrillation

BL:

Posterior box set

CFAE:

Complex fractionated atrial electrograms on both sites

CFAE-ant:

CFAE on the anterior site

CFAE-post:

CFAE on the posterior site

CMRT:

Cardiac magnetic resonance tomography

CT:

Computed tomography

EF:

Ejection fraction

MIL:

Mitral isthmus line

PV:

Pulmonary vein

PVI:

PV isolation

RL:

Roofline

WACA:

Wide area circumferential ablation

References

  1. 1.

    Adeniran, I., D. H. MacIver, C. J. Garratt, J. Ye, J. C. Hancox, and H. Zhang. Effects of persistent atrial fibrillation-induced electrical remodeling on atrial electro-mechanics—insights from a 3D model of the human atria. PLoS ONE 10:e0142397, 2015. doi:10.1371/journal.pone.0142397.

    Article  Google Scholar 

  2. 2.

    Alhogbani, T., O. Strohm, and M. G. Friedrich. Evaluation of left atrial contraction contribution to left ventricular filling using cardiovascular magnetic resonance. J. Magn. Reson. Imaging 37:860–864, 2013. doi:10.1002/jmri.23881.

    Article  Google Scholar 

  3. 3.

    Arentz, T., R. Weber, G. Bürkle, C. Herrera, T. Blum, J. Stockinger, et al. Small or large isolation areas around the pulmonary veins for the treatment of atrial fibrillation? Results from a prospective randomized study. Circulation 115:3057–3063, 2007. doi:10.1161/CIRCULATIONAHA.107.690578.

    Article  Google Scholar 

  4. 4.

    Bertoglio, C., D. Barber, N. Gaddum, I. Valverde, M. Rutten, P. Beerbaum, et al. Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model. J. Biomech. 47:1027–1034, 2014. doi:10.1016/j.jbiomech.2013.12.029.

    Article  Google Scholar 

  5. 5.

    Bestel, J., F. Clément, M. Sorine. A biomechanical model of muscle contraction. In: Med. Image Comput. Comput.-Assist. Interv.—MICCAI 2001, edited by W. J. Niessen and M. A. Viergever. Springer: Berlin, 2001, pp. 1159–1161.

  6. 6.

    Biehler, J., M. W. Gee, and W. A. Wall. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme. Biomech. Model. Mechanobiol. 14:489–513, 2014. doi:10.1007/s10237-014-0618-0.

    Article  Google Scholar 

  7. 7.

    Brooks, A. G., M. K. Stiles, J. Laborderie, D. H. Lau, P. Kuklik, N. J. Shipp, et al. Outcomes of long-standing persistent atrial fibrillation ablation: a systematic review. Heart Rhythm 7:835–846, 2010. doi:10.1016/j.hrthm.2010.01.017.

    Article  Google Scholar 

  8. 8.

    Bueno-Orovio, A., E. M. Cherry, and F. H. Fenton. Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253:544–560, 2008. doi:10.1016/j.jtbi.2008.03.029.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Calkins, H., K. H. Kuck, R. Cappato, J. Brugada, A. J. Camm, S.-A. Chen, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Heart Rhythm 9:632–696, 2012. doi:10.1016/j.hrthm.2011.12.016.

    Article  Google Scholar 

  10. 10.

    Chabiniok, R., P. Moireau, P.-F. Lesault, A. Rahmouni, J.-F. Deux, and D. Chapelle. Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech. Model. Mechanobiol. 11:609–630, 2011. doi:10.1007/s10237-011-0337-8.

    Article  Google Scholar 

  11. 11.

    Chapelle, D., P. Le Tallec, P. Moireau, and M. Sorine. Energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. Eng. 10(2):189–221, 2012.

    Article  Google Scholar 

  12. 12.

    Cho, Y., W. Lee, E.-A. Park, I.-Y. Oh, E.-K. Choi, J.-W. Seo, et al. The anatomical characteristics of three different endocardial lines in the left atrium: evaluation by computed tomography prior to mitral isthmus block attempt. Europace 14:1104–1111, 2012. doi:10.1093/europace/eus051.

    Article  Google Scholar 

  13. 13.

    Cochet, H., D. Scherr, S. Zellerhoff, F. Sacher, N. Derval, A. Denis, et al. Atrial structure and function 5 years after successful ablation for persistent atrial fibrillation: an MRI study. J. Cardiovasc. Electrophysiol. 25:671–679, 2014. doi:10.1111/jce.12449.

    Article  Google Scholar 

  14. 14.

    Colli Franzone, P., L. F. Pavarino, and S. Scacchi. Mathematical Cardiac Electrophysiology, Vol. 13. Cham: Springer International Publishing, 2014.

    Google Scholar 

  15. 15.

    Corrado, C., J.-F. Gerbeau, and P. Moireau. Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography. J. Comput. Phys. 283:271–298, 2015. doi:10.1016/j.jcp.2014.11.041.

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    De Ponti, R., S. Y. Ho, J. A. Salerno-Uriarte, M. Tritto, and G. Spadacini. Electroanatomic analysis of sinus impulse propagation in normal human atria. J. Cardiovasc. Electrophysiol. 13:1–10, 2002. doi:10.1046/j.1540-8167.2002.00001.x.

    Article  Google Scholar 

  17. 17.

    Geuzaine, C., and J.-F. Remacle. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79:1309–1331, 2009.

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Haissaguerre, M., M. Hocini, A. Denis, A. J. Shah, Y. Komatsu, S. Yamashita, et al. Driver domains in persistent atrial fibrillation. Circulation 130:530–538, 2014. doi:10.1161/CIRCULATIONAHA.113.005421.

    Article  Google Scholar 

  19. 19.

    Haïssaguerre, M., P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339:659–666, 1998. doi:10.1056/NEJM199809033391003.

    Article  Google Scholar 

  20. 20.

    Heeringa, J., D. A. M. van der Kuip, A. Hofman, J. A. Kors, G. van Herpen, B. H. C. Stricker, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27:949–953, 2006. doi:10.1093/eurheartj/ehi825.

    Article  Google Scholar 

  21. 21.

    Ho, S. Y., R. H. Anderson, and D. Sánchez-Quintana. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc. Res. 54:325–336, 2002. doi:10.1016/S0008-6363(02)00226-2.

    Article  Google Scholar 

  22. 22.

    Hoermann, J. M., C. Bertoglio, and W. A. Wall. Discontinuous approximations for electrophysiology problems. In: 4th International Conference on Computational and Mathematical Biomedical Engineering, 2015, pp. 692–695.

  23. 23.

    Huemer, M., A. Wutzler, A. S. Parwani, P. Attanasio, H. Matsuda, F. Blaschke, et al. Comparison of the anterior and posterior mitral isthmus ablation lines in patients with perimitral annulus flutter or persistent atrial fibrillation. J. Interv. Cardiac Electrophysiol. 44:119–129, 2015. doi:10.1007/s10840-015-0033-1.

    Article  Google Scholar 

  24. 24.

    Krahn, A. D., J. Manfreda, R. B. Tate, F. A. L. Mathewson, and T. E. Cuddy. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the manitoba follow-up study. Am. J. Med. 98:476–484, 1995. doi:10.1016/S0002-9343(99)80348-9.

    Article  Google Scholar 

  25. 25.

    Krogh-Madsen, T., G. W. Abbott, and D. J. Christini. Effects of electrical and structural remodeling on atrial fibrillation maintenance: A simulation study. PLoS Comput. Biol. 2012. doi:10.1371/journal.pcbi.1002390.

    Google Scholar 

  26. 26.

    Krueger, M. W., W. H. W. Schulze, K. S. Rhode, R. Razavi, G. Seemann, and O. Dössel. Towards personalized clinical in silico modeling of atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 51:1251–1260, 2013. doi:10.1007/s11517-012-0970-0.

    Article  Google Scholar 

  27. 27.

    Krueger, M. W., G. Seemann, K. Rhode, D. U. J. Keller, C. Schilling, A. Arujuna, et al. Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation. IEEE Trans. Med. Imaging 32:73–84, 2013. doi:10.1109/TMI.2012.2201948.

    Article  Google Scholar 

  28. 28.

    Lemery, R., L. Soucie, B. Martin, A. S. L. Tang, M. Green, and J. Healey. Human study of biatrial electrical coupling determinants of endocardial septal activation and conduction over interatrial connections. Circulation 110:2083–2089, 2004. doi:10.1161/01.CIR.0000144461.83835.A1.

    Article  Google Scholar 

  29. 29.

    Moireau, P., C. Bertoglio, N. Xiao, C. A. Figueroa, C. A. Taylor, D. Chapelle, et al. Sequential identification of boundary support parameters in a fluid–structure vascular model using patient image data. Biomech. Model. Mechanobiol. 12:475–496, 2012. doi:10.1007/s10237-012-0418-3.

    Article  Google Scholar 

  30. 30.

    Nagler, A., C. Bertoglio, C. T. Stoeck, S. Kozerke, and W. A. Wall. Cardiac fibers estimation from arbitrarily spaced diffusion weighted MRI. In: Functional Imaging and Modeling of the Heart, edited by H. van Assen, P. Bovendeerd, and T. Delhaas. Springer International Publishing, 2015, pp. 198–206. doi:10.1007/978-3-319-20309-6_23.

  31. 31.

    Nagler, A., C. Bertoglio, M. Gee, and W. Wall. Personalization of cardiac fiber orientations from image data using the unscented kalman filter. In: Funct. Imaging Model. Heart, edited by S. Ourselin, D. Rueckert, and N. Smith. Berlin: Springer, 2013, pp. 132–140.

  32. 32.

    Reumann, M., J. Bohnert, G. Seemann, B. Osswald, and O. Dossel. Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans. Biomed. Eng. 55:399–406, 2008. doi:10.1109/TBME.2007.912672.

    Article  Google Scholar 

  33. 33.

    Rotter, M., L. Dang, V. Jacquemet, N. Virag, L. Kappenberger, and M. Haïssaguerre. Impact of varying ablation patterns in a simulation model of persistent atrial fibrillation. Pacing Clin. Electrophysiol. 30:314–321, 2007. doi:10.1111/j.1540-8159.2007.00671.x.

    Article  Google Scholar 

  34. 34.

    Sanders, P., P. Jaïs, M. Hocini, L.-F. Hsu, C. Scavée, F. Sacher, et al. Electrophysiologic and clinical consequences of linear catheter ablation to transect the anterior left atrium in patients with atrial fibrillation. Heart Rhythm 1:176–184, 2004. doi:10.1016/j.hrthm.2004.03.072.

    Article  Google Scholar 

  35. 35.

    Schotten, U., S. Verheule, P. Kirchhof, and A. Goette. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91:265–325, 2011. doi:10.1152/physrev.00031.2009.

    Article  Google Scholar 

  36. 36.

    Shah, A. J., M. Hocini, O. Xhaet, P. Pascale, L. Roten, S. B. Wilton, et al. Validation of novel 3-dimensional electrocardiographic mapping of atrial tachycardias by invasive mapping and ablation: a multicenter study. J. Am. Coll. Cardiol. 62:889–897, 2013. doi:10.1016/j.jacc.2013.03.082.

    Article  Google Scholar 

  37. 37.

    Shi, Y., P. Lawford, and R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. OnLine 10:33, 2011. doi:10.1186/1475-925X-10-33.

    Article  Google Scholar 

  38. 38.

    Sparks, P. B., H. G. Mond, J. K. Vohra, S. Jayaprakash, and J. M. Kalman. Electrical remodeling of the atria following loss of atrioventricular synchrony. A long-term study in humans. Circulation 100:1894–1900, 1999. doi:10.1161/01.CIR.100.18.1894.

    Article  Google Scholar 

  39. 39.

    Sparks, P. B., H. G. Mond, J. K. Vohra, A. G. Yapanis, L. E. Grigg, and J. M. Kalman. Mechanical remodeling of the left atrium after loss of atrioventricular synchrony a long-term study in humans. Circulation 100:1714–1721, 1999. doi:10.1161/01.CIR.100.16.1714.

    Article  Google Scholar 

  40. 40.

    Verma, A., C. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, et al. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med. 372:1812–1822, 2015. doi:10.1056/NEJMoa1408288.

    Article  Google Scholar 

  41. 41.

    Weber, F. M., S. Lurz, D. U. J. Keller, D. L. Weiss, G. Seemann, C. Lorenz, et al. Adaptation of a minimal four-state cell model for reproducing atrial excitation properties. Comput. Cardiol. 2008:61–64, 2008. doi:10.1109/CIC.2008.4748977.

    Google Scholar 

  42. 42.

    Wolf, P. A., R. D. Abbott, and W. B. Kannel. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22:983–988, 1991. doi:10.1161/01.STR.22.8.983.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Centers for Radiology of Klinikum rechts der Isar and German Heart Center, Munich, for image data used in this work. This works has partially been funded from the Institute for Advanced Study, Technical University of Munich, as part of the Focus Group “Advanced Cardiac Mechanics Emulator”.

Conflict of Interest

All authors declare that they have no conflict of interest.

Statement of Human Studies

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristóbal Bertoglio.

Additional information

Associate Editors Robert L. Abraham and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hörmann, J.M., Bertoglio, C., Nagler, A. et al. Multiphysics Modeling of the Atrial Systole under Standard Ablation Strategies. Cardiovasc Eng Tech 8, 205–218 (2017). https://doi.org/10.1007/s13239-017-0308-z

Download citation

Keywords

  • Catheter ablation
  • Electro-fluid-tissue biophysics
  • Mathematical modeling
  • Computational simulations