Advertisement

Cardiovascular Engineering and Technology

, Volume 8, Issue 2, pp 219–228 | Cite as

Effect of Loss of Heart Rate Variability on T-Wave Heterogeneity and QT Variability in Heart Failure Patients: Implications in Ventricular Arrhythmogenesis

  • Sachin Nayyar
  • Muhammad A. HasanEmail author
  • Kurt C. Roberts-Thomson
  • Thomas Sullivan
  • Mathias Baumert
Article

Abstract

Heart rate variability (HRV) modulates dynamics of ventricular repolarization. A diminishing value of HRV is associated with increased vulnerability to life-threatening ventricular arrhythmias, however the causal relationship is not well-defined. We evaluated if fixed-rate atrial pacing that abolishes the effect of physiological HRV, will alter ventricular repolarization wavefronts and is relevant to ventricular arrhythmogenesis. The study was performed in 16 subjects: 8 heart failure patients with spontaneous ventricular tachycardia [HFVT], and 8 subjects with structurally normal hearts (H Norm). The T-wave heterogeneity descriptors [total cosine angle between QRS and T-wave loop vectors (TCRT, negative value corresponds to large difference in the 2 loops), T-wave morphology dispersion, T-wave loop dispersion] and QT intervals were analyzed in a beat-to-beat manner on 3-min records of 12-lead surface ECG at baseline and during atrial pacing at 80 and 100 bpm. The global T-wave heterogeneity was expressed as mean values of each of the T-wave morphology descriptors and variability in QT intervals (QTV) as standard deviation of QT intervals. Baseline T-wave morphology dispersion and QTV were higher in HFVT compared to H Norm subjects (p ≤ 0.02). While group differences in T-wave morphology dispersion and T-wave loop dispersion remained unaltered with atrial pacing, TCRT tended to fall more in HFVT patients compared to H Norm subjects (interaction p value = 0.086). Atrial pacing failed to reduce QTV in both groups, however group differences were augmented (p < 0.0001). Atrial pacing and consequent loss of HRV appears to introduce unfavorable changes in ventricular repolarization in HFVT subjects. It widens the spatial relationship between wavefronts of ventricular depolarization and repolarization. This may partly explain the concerning relation between poorer HRV and the risk of ventricular arrhythmias.

Keywords

T-Wave heterogeneity QT variability Cardiomyopathy Atrial pacing Autonomic modulation 

Notes

Acknowledgments

Dr. Nayyar is supported by the Robert J. Craig Electrophysiology Scholarship from the University of Adelaide. Drs. Roberts-Thomson is funded by the National Heart Foundation of Australia and the Sylvia & Charles Viertel Foundation Australia. Dr Baumert is supported by a fellowship and grant from the Australian Research Council (ARC DP 110102049).

Conflict of interests

None.

Statement of Human Studies

All patients provided informed consent. The study was approved by the Human Research Ethics Committee of the Royal Adelaide Hospital and the University of Adelaide.

References

  1. 1.
    Acar, B., G. Yi, K. Hnatkova, and M. Malik. Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Med. Biol. Eng. Comput. 37:574–584, 1999.CrossRefGoogle Scholar
  2. 2.
    Aronson, D., and A. J. Burger. Effect of beta-blockade on heart rate variability in decompensated heart failure. Int. J. Cardiol. 79:31–39, 2001.CrossRefGoogle Scholar
  3. 3.
    Baumert, M. Measurement of T wave variability in body surface ECG. J. Electrocardiol. 49:883–886, 2016.CrossRefGoogle Scholar
  4. 4.
    Baumert, M., V. Baier, J. Haueisen, N. Wessel, U. Meyerfeldt, A. Schirdewan, et al. Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Methods Inf. Med. 43:202–206, 2004.Google Scholar
  5. 5.
    Baumert, M., A. Porta, M. A. Vos, M. Malik, J.-P. Couderc, P. Laguna, et al. QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology. Europace. 18:1922–1944, 2016.Google Scholar
  6. 6.
    Berger, R., E. Kasper, K. Baughman, E. Marban, H. Calkins, and G. Tomaselli. Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96:1557–1565, 1997.CrossRefGoogle Scholar
  7. 7.
    Boriani, G., R. Tukkie, A. S. Manolis, L. Mont, H. Purerfellner, M. Santini, et al. Atrial antitachycardia pacing and managed ventricular pacing in bradycardia patients with paroxysmal or persistent atrial tachyarrhythmias: the MINERVA randomized multicentre international trial. Eur. Heart J. 35:2352–2362, 2014.CrossRefGoogle Scholar
  8. 8.
    Chinushi, M., Y. Hosaka, T. Washizuka, H. Furushima, and Y. Aizawa. Arrhythmogenesis of T wave alternans associated with surface QRS complex alternans and the role of ventricular prematurity: observations from a canine model of LQT3 syndrome. J. Cardiovasc. Electrophysiol. 13:599–604, 2002.CrossRefGoogle Scholar
  9. 9.
    Dvir, H., and S. Zlochiver. Stochastic cardiac pacing increases ventricular electrical stability—a computational study. Biophys. J. 105:533–542, 2013.CrossRefGoogle Scholar
  10. 10.
    Gil, M. L., F. Arribas, and F. Cosio. Ventricular fibrillation induced by rapid atrial rates in patients with hypertrophic cardiomyopathy. Europace. 2:327–332, 2000.CrossRefGoogle Scholar
  11. 11.
    Haigney, M., W. Zareba, P. Gentlesk, R. Goldstein, M. Illovsky, S. McNitt, et al. QT interval variability and spontaneous ventricular tachycardia or fibrillation in the Multi-center Automatic Defibrillator Implantation Trial (MADIT) II patients. J. Am. Coll. Cardiol. 44:1481–1487, 2004.CrossRefGoogle Scholar
  12. 12.
    Hartikainen, J. E., M. Malik, A. Staunton, J. Poloniecki, and A. J. Camm. Distinction between arrhythmic and nonarrhythmic death after acute myocardial infarction based on heart rate variability, signal-averaged electrocardiogram, ventricular arrhythmias and left ventricular ejection fraction. J. Am. Coll. Cardiol. 28:296–304, 1996.CrossRefGoogle Scholar
  13. 13.
    Hasan, M. A., and D. Abbott. A review of beat-to-beat vectorcardiographic (VCG) parameters for analyzing repolarization variability in ECG signals. Biomed. Eng. 2015. doi: 10.1515/bmt-2015-0005.Google Scholar
  14. 14.
    Hasan, M. A., D. Abbott, and M. Baumert. Beat-to-beat vectorcardiographic analysis of ventricular depolarization and repolarization in myocardial infarction. PLoS ONE 7:e49489, 2012.CrossRefGoogle Scholar
  15. 15.
    Hasan, M. A., D. Abbott, and M. Baumert. Relation between beat-to-beat QT interval variability and T-wave amplitude in healthy subjects. Ann. Noninvasive Electrocardiol. 17:195–203, 2012.CrossRefGoogle Scholar
  16. 16.
    Hasan, M. A., Abbott, D., and M. Baumert. Beat-to-beat spatial and temporal analysis for QRS-T morphology. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE, pp. 4193–4195, 2012.Google Scholar
  17. 17.
    Hasan, M. A., D. Abbott, and M. Baumert. Beat-to-beat QT interval variability and T-wave amplitude in patients with myocardial infarction. Physiol. Meas. 34:1075–1083, 2013.CrossRefGoogle Scholar
  18. 18.
    Hasan, M. A., D. Abbott, M. Baumert, and S. Krishnan. Increased beat-to-beat T-wave variability in myocardial infarction patients. Biomed. Eng. 2016. doi: 10.1016/j.compbiomed.2016.07.001.Google Scholar
  19. 19.
    Hasan, M. A., Starc, V., Porta, A., Abbott, D., Baumert, M. Improved ECG pre-processing for beat-to-beat QT interval variability measurement. In: Proc Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2563–2566, 2013.Google Scholar
  20. 20.
    Kleber, A., and Y. Rudy. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84:431–488, 2004.CrossRefGoogle Scholar
  21. 21.
    Krauss, T. T., W. Mauser, M. Reppel, H. Schunkert, and H. Bonnemeier. Gender effects on novel time domain parameters of ventricular repolarization inhomogeneity. Pacing Clin. Electrophysiol. 32(Suppl 1):S167–S172, 2009.CrossRefGoogle Scholar
  22. 22.
    Lau, C. P., N. Tachapong, C. C. Wang, J. F. Wang, H. Abe, C. W. Kong, et al. Prospective randomized study to assess the efficacy of site and rate of atrial pacing on long-term progression of atrial fibrillation in sick sinus syndrome: Septal Pacing for Atrial Fibrillation Suppression Evaluation (SAFE) Study. Circulation 128:687–693, 2013.CrossRefGoogle Scholar
  23. 23.
    Malik, M. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 93:1043–1065, 1996.CrossRefGoogle Scholar
  24. 24.
    Marrus, S. B., C. M. Andrews, D. H. Cooper, M. N. Faddis, and Y. Rudy. Repolarization changes underlying long-term cardiac memory due to right ventricular pacing: noninvasive mapping with electrocardiographic imaging. Circ. Arrhythm Electrophysiol. 5:773–781, 2012.CrossRefGoogle Scholar
  25. 25.
    Nayyar, S., K. C. Roberts-Thomson, M. A. Hasan, T. Sullivan, J. Harrington, P. Sanders, et al. Autonomic modulation of repolarization instability in patients with heart failure prone to ventricular tachycardia. Am. J. Physiol. Heart Circ. Physiol. 305:H1181–H1188, 2013.CrossRefGoogle Scholar
  26. 26.
    Oehler, A., T. Feldman, C. A. Henrikson, and L. G. Tereshchenko. QRS-T angle: A review. Ann. Noninvasive Electrocardiol. 19:534–542, 2014.CrossRefGoogle Scholar
  27. 27.
    Porthan, K., M. Viitasalo, L. Toivonen, A. S. Havulinna, A. Jula, J. T. Tikkanen, et al. Predictive value of electrocardiographic T-wave morphology parameters and T-wave peak to T-wave end interval for sudden cardiac death in the general population. Circ. Arrhythm Electrophysiol. 6:690–696, 2013.CrossRefGoogle Scholar
  28. 28.
    Rosenbaum, M. B., H. H. Blanco, M. V. Elizari, J. O. Lazzari, and J. M. Davidenko. Electrotonic modulation of the T wave and cardiac memory. Am. J. Cardiol. 50:213–222, 1982.CrossRefGoogle Scholar
  29. 29.
    Sanders, P., P. M. Kistler, J. B. Morton, S. J. Spence, and J. M. Kalman. Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation 110:897–903, 2004.CrossRefGoogle Scholar
  30. 30.
    Shen, M. J., and D. P. Zipes. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 114:1004–1021, 2014.CrossRefGoogle Scholar
  31. 31.
    Shinbane, J. S., M. A. Wood, D. N. Jensen, K. A. Ellenbogen, A. P. Fitzpatrick, and M. M. Scheinman. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J. Am. Coll. Cardiol. 29:709–715, 1997.CrossRefGoogle Scholar
  32. 32.
    Smetana, P., V. N. Batchvarov, K. Hnatkova, A. J. Camm, and M. Malik. Sex differences in repolarization homogeneity and its circadian pattern. Am. J. Physiol. Heart Circ. Physiol. 282:H1889–H1897, 2002.CrossRefGoogle Scholar
  33. 33.
    Tanno, K., S. Ryu, N. Watanabe, Y. Minoura, M. Kawamura, T. Asano, et al. Microvolt T-wave alternans as a predictor of ventricular tachyarrhythmias: a prospective study using atrial pacing. Circulation 109:1854–1858, 2004.CrossRefGoogle Scholar
  34. 34.
    Ten Sande, J. N., P. Damman, J. G. Tijssen, J. R. De Groot, R. E. Knops, A. A. Wilde, et al. Value of serial heart rate variability measurement for prediction of appropriate ICD discharge in patients with heart failure. J. Cardiovasc. Electrophysiol. 25:60–65, 2014.CrossRefGoogle Scholar
  35. 35.
    Tereshchenko, L. G., C. A. Henrikson, and R. D. Berger. Strong coherence between heart rate variability and intracardiac repolarization lability during biventricular pacing is associated with reverse electrical remodeling of the native conduction and improved outcome. J. Electrocardiol. 44:713–717, 2011.CrossRefGoogle Scholar
  36. 36.
    Wilber, D. J., W. Zareba, W. J. Hall, M. W. Brown, A. C. Lin, M. L. Andrews, et al. Time dependence of mortality risk and defibrillator benefit after myocardial infarction. Circulation 109:1082–1084, 2004.CrossRefGoogle Scholar
  37. 37.
    Wu, R., and A. Patwardhan. Restitution of action potential duration during sequential changes in diastolic intervals shows multimodal behavior. Circ. Res. 94:634–641, 2004.CrossRefGoogle Scholar
  38. 38.
    Zabel, M., B. Acar, T. Klingenheben, M. R. Franz, S. H. Hohnloser, and M. Malik. Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation 102:1252–1257, 2000.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Z. B. Popovic, S. Bibevski, I. Fakhry, D. A. Sica, D. R. Van Wagoner, et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ. Heart Fail. 2:692–699, 2009.CrossRefGoogle Scholar
  40. 40.
    Zipes, D. P., P. R. Foster, P. J. Troup, and D. H. Pedersen. Atrial induction of ventricular tachycardia: reentry versus triggered automaticity. Am. J. Cardiol. 44:1–8, 1979.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Sachin Nayyar
    • 1
  • Muhammad A. Hasan
    • 2
    • 3
    Email author
  • Kurt C. Roberts-Thomson
    • 1
  • Thomas Sullivan
    • 4
  • Mathias Baumert
    • 2
  1. 1.Centre for Heart Rhythm DisordersUniversity of Adelaide and Royal Adelaide HospitalAdelaideAustralia
  2. 2.School of Electrical & Electronic EngineeringUniversity of AdelaideAdelaideAustralia
  3. 3.Division of CardiologyUniversity Health NetworkTorontoCanada
  4. 4.School of Public HealthUniversity of AdelaideAdelaideAustralia

Personalised recommendations