Skip to main content
Log in

Fourier Transform Infrared Spectroscopic Imaging-Derived Collagen Content and Maturity Correlates with Stress in the Aortic Wall of Abdominal Aortic Aneurysm Patients

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta characterized by severe disruption of the structural integrity of the aortic wall and its major molecular constituents. From the early stages of disease, elastin in the aorta becomes highly degraded and is replaced by collagen. Questions persist as to the contribution of collagen content, quality and maturity to the potential for rupture. Here, using our recently developed Fourier transform infrared imaging spectroscopy (FT-IRIS) method, we quantified collagen content and maturity in the wall of AAA tissues in pairs of specimens with different wall stresses. CT scans of AAAs from 12 patients were used to create finite element models to estimate stress in different regions of tissue. Each patient underwent elective repair of the AAA, and two segments of the AAA tissues from anatomic regions more proximal or distal with different wall stresses were evaluated by histology and FT-IRIS after excision. For each patient, collagen content was generally greater in the tissue location with lower wall stress, which corresponded to the more distal anatomic regions. The wall stress/collagen ratio was greater in the higher stress region compared to the lower stress region (1.01 ± 1.09 vs. 0.55 ± 0.084, p = 0.02). The higher stress region also corresponded to the location with reduced intraluminal thrombus thickness. Further, collagen maturity tended to decrease with increased collagen content (p = 0.068, R = 0.38). Together, these results suggest that an increase in less mature collagen content in AAA patients does not effectively compensate for the loss of elastin in the aortic wall, and results in a reduced capability to endure wall stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hellenthal, F. A. M. V. I., W. A. Buurman, W. K. W. H. Wodzig, and G. W. H. Schurink. Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat. Rev. Cardiol. 6:464–474, 2009.

    Article  Google Scholar 

  2. Michel, J.-B., J.-L. Martin-Ventura, J. Egido, et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 90:18–27, 2011.

    Article  Google Scholar 

  3. Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.

    Article  Google Scholar 

  4. Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365(1577–158):9, 2005.

    Google Scholar 

  5. Laine, M. T., S. J. Laukontaus, I. Kantonen, and M. Venermo. Population-based study of ruptured abdominal aortic aneurysm. Br. J. Surg. 103:1634–1639, 2016.

    Article  Google Scholar 

  6. Tsamis, A., J. T. Krawiec, and D. A. Vorp. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J. R. Soc. Interface 10:20121004, 2013.

    Article  Google Scholar 

  7. Carmo, M., L. Colombo, A. Bruno, et al. Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur J Vasc. Endovasc. Surg. 23:543–549, 2002.

    Article  Google Scholar 

  8. Samouillan, V., J. Dandurand, C. Lacabanne, et al. Characterization of aneurysmal aortas by biochemical, thermal, and dielectric techniques. J. Biomed. Mater. Res. A 95:611–619, 2010.

    Article  Google Scholar 

  9. Rizzo, R. J., W. J. McCarthy, S. N. Dixit, et al. Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc. Surg 10:365–373, 1989.

    Article  Google Scholar 

  10. Tierney, A. P., D. M. Dumont, A. Callanan, G. E. Trahey, and T. M. McGloughlin. Acoustic radiation force impulse imaging on ex vivo abdominal aortic aneurysm model. Ultrasound Med. Biol. 36:821–832, 2010.

    Article  Google Scholar 

  11. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006.

    Article  Google Scholar 

  12. Wilson, K. A., J. S. Lindholt, P. R. Hoskins, L. Heickendorff, S. Vammen, and A. W. Bradbury. The relationship between abdominal aortic aneurysm distensibility and serum markers of elastin and collagen metabolism. Eur. J. Vasc. Endovasc. Surg. 21:175–178, 2001.

    Article  Google Scholar 

  13. KA, Wilson, A. J. Lee, P. R. Hoskins, F. G. R. Fowkes, C. V. Ruckley, and A. W. Bradbury. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J. Vasc. Surg. 37:112–117, 2003.

    Article  Google Scholar 

  14. Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25:916–926, 1997.

    Article  Google Scholar 

  15. Vorp, D. A., P. C. Lee, D. H. Wang, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.

    Article  Google Scholar 

  16. Maier, A., M. W. Gee, C. Reeps, J. Pongratz, H.-H. Eckstein, and W. A. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.

    Article  Google Scholar 

  17. Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56:II161–II164, 1977.

    Google Scholar 

  18. Doyle, B. J., A. J. Cloonan, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43:1408–1416, 2010.

    Article  Google Scholar 

  19. Kratzberg, J. A., P. J. Walker, E. Rikkers, and M. L. Raghavan. The effect of proteolytic treatment on plastic deformation of porcine aortic tissue. J. Mech. Behav. Biomed. Mater. 2:65–72, 2009.

    Article  Google Scholar 

  20. Bonnier, F., S. Rubin, L. Ventéo, et al. In-vitro analysis of normal and aneurismal human ascending aortic tissues using FT-IR microspectroscopy. Biochimica et Biophysica Acta 1758:968–973, 2006.

    Article  Google Scholar 

  21. Rubin, S., F. Bonnier, C. Sandt, et al. Analysis of structural changes in normal and aneurismal human aortic tissues using FTIR microscopy. Biopolymers 89:160–169, 2007.

    Article  Google Scholar 

  22. Bonnier, F., S. Rubin, L. Debelle, et al. FTIR protein secondary structure analysis of human ascending aortic tissues. J. Biophotonics 1:204–214, 2008.

    Article  Google Scholar 

  23. Bonnier, F., D. Bertrand, S. Rubin, et al. Detection of pathological aortic tissues by infrared multispectral imaging and chemometrics. Analyst 133:784–790, 2008.

    Article  Google Scholar 

  24. Sa, O’ Leary, J. J. Mulvihill, H. E. Barrett, et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J. Mech. Behav. Biomed. Mater. 42:154–167, 2015.

    Article  Google Scholar 

  25. Cheheltani, R., J. M. Rosano, B. Wang, A. K. Sabri, N. Pleshko, and M. F. Kiani. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction. J. Biomed. Opt. 17:056014, 2012.

    Article  Google Scholar 

  26. Nallala, J., G. R. Lloyd, N. Shepherd, and N. Stone. High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features. Analyst 141:630–639, 2015.

    Article  Google Scholar 

  27. Noreen, R., M. Moenner, Y. Hwu, and C. Petibois. FTIR spectro-imaging of collagens for characterization and grading of gliomas. Biotechnol. Adv. 30:1432–1446, 2012.

    Article  Google Scholar 

  28. Tiwari, S., and R. Bhargava. Extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis. Yale J. Biol. Med. 88:131–143, 2015.

    Google Scholar 

  29. Tosi, G., E. Giorgini, C. Rubini, S. Sabbatini, V. Librando, and F. Alo. Vibrational spectroscopy as a supporting technique in clinical diagnosis and prognosis of atherosclerotic carotid plaques: a review. Anal. Quant. Cytopathol. Histpathol. 34:214–232, 2012.

    Google Scholar 

  30. Russell, H. K. A modification of Movat’s pentachrome stain. Arch. Pathol. 94:187–191, 1972.

    Google Scholar 

  31. Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36:921–932, 2008.

    Article  Google Scholar 

  32. Vande Geest, J. P., Martino E. S. Di, A. Bohra, M. S. Makaroun, and D. A. Vorp. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 1085:11–21, 2006.

    Article  Google Scholar 

  33. Boskey, A., and N. Pleshko Camacho. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478, 2007.

    Article  Google Scholar 

  34. Farlay, D., M.-E. Duclos, E. Gineyts, et al. The ratio 1660/1690 cm(−1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PloS ONE 6:e28736, 2011.

    Article  Google Scholar 

  35. Barth, H. D., E. A. Zimmermann, E. Schaible, S. Y. Tang, T. Alliston, and R. O. Ritchie. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32:8892–8904, 2011.

    Article  Google Scholar 

  36. McNerny, E. M., B. Gong, M. D. Morris, and D. H. Kohn. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J. Bone Miner. Res. 30:455–464, 2014.

    Article  Google Scholar 

  37. Oest, M. E., B. Gong, K. Esmonde-White, et al. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia. Bone 86:91–97, 2016.

    Article  Google Scholar 

  38. Wen, X. X., F. Q. Wang, C. Xu, et al. Time related changes of mineral and collagen and their roles in cortical bone mechanics of ovariectomized rabbits. PLoS ONE 10:e0127973, 2015.

    Article  Google Scholar 

  39. Homes, C. C. Fourier transform infrared spectroscopy. Condens. Matter Phys., 1–28, 2011.

  40. Choke, E., M. M. Thompson, J. Dawson, et al. Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler. Thromb. Vasc. Biol. 26:2077–2082, 2006.

    Article  Google Scholar 

  41. Thompson, R. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr. Probl. Surg. 39:110–230, 2002.

    Article  Google Scholar 

  42. Canfield, R., and P. B. Dobrin. Elastase, collagenase, and the biaxial elastic properties of dog carotid artery. Am. J. Physiol. 247:H124–H131, 1984.

    Google Scholar 

  43. Dobrin, P. B. Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg. Clin. N. Am. 69:687–703, 1989.

    Article  Google Scholar 

  44. Huffman, M. D., J. A. Curci, G. Moore, D. B. Kerns, B. C. Starcher, and R. W. Thompson. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms. Surgery 128:429–438, 2000.

    Article  Google Scholar 

  45. Tsarouhas, K., G. Soufla, S. Apostolakis, et al. Transcriptional regulation of TIMPs in ascending aorta aneurysms. Thromb. Res. 126:399–405, 2010.

    Article  Google Scholar 

  46. Satta, J., T. Juvonen, K. Haukipuro, M. Juvonen, and M. I. Kairaluoma. Increased turnover of collagen in abdominal aortic aneurysms, demonstrated by measuring the concentration of the aminoterminal propeptide of type III procollagen in peripheral and aortal blood samples. J. Vasc. Surg. 22:155–160, 1995.

    Article  Google Scholar 

  47. Menashi, S., J. S. Campa, R. M. Greenhalgh, and J. T. Powell. Collagen in abdominal aortic aneurysm: typing, content, and degradation. J. Vasc. Surg. 6:578–582, 1987.

    Article  Google Scholar 

  48. Eberlová, L., Z. Tonar, K. Witter, et al. Asymptomatic abdominal aortic aneurysms show histological signs of progression: a quantitative histochemical analysis. Pathobiology 80:11–23, 2013.

    Article  Google Scholar 

  49. Lindeman, J. H. N., B. A. Ashcroft, J.-W. M. Beenakker, et al. Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome. Proc. Natl. Acad. Sci. USA 107:862–865, 2010.

    Article  Google Scholar 

  50. Folkesson, M., A. Silveira, P. Eriksson, and J. Swedenborg. Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis 218:294–299, 2011.

    Article  Google Scholar 

  51. Weber, K. T. Cardiac interstitium in health and disease: the fibrillar collagen network. J. Am. Coll. Cardiol. 13:1637–1652, 1989.

    Article  Google Scholar 

  52. Sun, Y., and K. T. Weber. Animal models of cardiac fibrosis. Methods Mol. Med. 117:273–290, 2005.

    Google Scholar 

  53. Sun, Y., M. F. Kiani, A. E. Postlethwaite, and K. T. Weber. Infarct scar as living tissue. Basic Res. Cardiol. 97:343–347, 2002.

    Article  Google Scholar 

  54. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.

    Article  Google Scholar 

  55. Koole, D., H. J. Zandvoort, A. Schoneveld, et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 57:77–83, 2013.

    Article  Google Scholar 

  56. Bosemark, P., C. Perdikouri, M. Pelkonen, H. Isaksson, and M. Taqil. The masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect. J. Orthop. Res. 33:488–495, 2015.

    Article  Google Scholar 

  57. Sroka-Bartnicka, A., J. A. Kimber, L. Borkowski, et al. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal. Bioanal. Chem. 407:7775–7785, 2015.

    Article  Google Scholar 

  58. Saito, M., and K. Marumo. Effects of collagen crosslinking on bone material properties in health and disease. Calcif. Tissue Int. 97:242–261, 2015.

    Article  Google Scholar 

  59. Wetzel, D. L., G. R. Post, and R. A. Lodder. Synchrotron infrared microspectroscopic analysis of collagens I, III, and elastin on the shoulders of human thin-cap fibroatheromas. Vib. Spectrosc. 38:53–59, 2005.

    Article  Google Scholar 

  60. PA, West, Torzilli PA, C. Chen, P. Lin, and N. P. Camacho. Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10:14015, 2005.

    Article  Google Scholar 

  61. Kim, S.-S., C. Young, and B. Mizaikoff. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 390:231–237, 2008.

    Article  Google Scholar 

  62. Speelman, L., F. A. Hellenthal, B. Pulinx, et al. The influence of wall stress on AAA growth and biomarkers. Eur. J. Vasc. Endovasc. Surg. 39:410–416, 2010.

    Article  Google Scholar 

  63. Raut, S. S., A. Jana, V. De Oliveira, S. C. Muluk, and E. A. Finol. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J. Biomech. Eng. 135:81010, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Temple University Bioengineering Department (to NP), NIH Grant # R01HL079313 (to DAV), and grants from the Nanotechnology Institute and Shriners Hospitals for Children (to MFK). We gratefully acknowledge Nicholas J. Caccese for assistance with document formatting.

Conflict of interest statement

The authors have no conflict of interest that would inappropriately influence or bias their work presented in this article.

Statement of Human Studies

Human AAA wall specimens used in this study were surgically excised from patients during elective surgical repair of their aneurysms according to Institutional Review Board of the University of Pittsburgh (IRB # 0407173).

Statement of Animal Studies

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Pleshko.

Additional information

Associate Editors Wei Sun and Ajit Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheheltani, R., Pichamuthu, J.E., Rao, J. et al. Fourier Transform Infrared Spectroscopic Imaging-Derived Collagen Content and Maturity Correlates with Stress in the Aortic Wall of Abdominal Aortic Aneurysm Patients. Cardiovasc Eng Tech 8, 70–80 (2017). https://doi.org/10.1007/s13239-016-0289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0289-3

Keywords

Navigation