Systolic Time Intervals and New Measurement Methods

Abstract

Systolic time intervals have been used to detect and quantify the directional changes of left ventricular function. New methods of recording these cardiac timings, which are less cumbersome, have been recently developed and this has created a renewed interest and novel applications for these cardiac timings. This manuscript reviews these new methods and addresses the potential for the application of these cardiac timings for the diagnosis and prognosis of different cardiac diseases.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    Atkins, C. E., and P. S. Snyder. Systolic time intervals and their derivatives for evaluation of cardiac function. J. Vet. Intern. Med. 6(2):55–63, 1992. doi:10.1111/j.1939-1676.1992.tb03152.x.

    Article  Google Scholar 

  2. 2.

    Badano, L. P., O. Gaddi, C. Peraldo, et al. Left ventricular electromechanical delay in patients with heart failure and normal QRS duration and in patients with right and left bundle branch block. Europace 9(1):41–47, 2007.

    Article  Google Scholar 

  3. 3.

    Baevskii, R. M., A. D. Egorov, and L. A. Kazarian. The method of seismocardiography. Kardiologiia 18:87–89, 1964.

    Google Scholar 

  4. 4.

    Baker, C., C. J. Love, M. L. Moeschberger, D. A. Orsinelli, L. Yamokoski, and C. V. Leier. Time intervals of cardiac resynchronization therapy in heart failure. Am J Cardiol. 94(9):1192–1196, 2004.

    Article  Google Scholar 

  5. 5.

    Balasubramanian, V., O. P. Mathew, A. Behl, S. C. Tewari, and R. S. Hoon. Electrical impedance cardiogram in derivation of systolic time intervals. Br. Heart J. 40(3):268–275, 1978.

    Article  Google Scholar 

  6. 6.

    Boudoulas, H. Systolic time intervals. Eur. Heart J. 11:93–104, 1990.

    Article  Google Scholar 

  7. 7.

    Boudoulas, H., P. Geleris, C. A. Bush, et al. Assessment of ventricular function by combined noninvasive measures: factors accounting for methodologic disparities. Int J Cardiol. 2(5–6):493–506, 1983.

    Article  Google Scholar 

  8. 8.

    Boudoulas, H., D. Mantzouratos, Y. H. Sohn, and A. M. Weissler. Left ventricular mass and systolic performance in chronic systemic hypertension. Am. J. Cardiol. 57(4):232–237, 1986.

    Article  Google Scholar 

  9. 9.

    Brubakk, O., T. R. Pedersen, and K. Overskeid. Noninvasive evaluation of the effect of timolol on left ventricular performance after myocardial infarction and the consequence for prognosis. J. Am. Coll. Cardiol. 9(1):155–160, 1987.

    Article  Google Scholar 

  10. 10.

    Carvalho, P., R. P. Paiva, R. Couceiro, et al. Comparison of systolic time interval measurement modalities for portable devices. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:606–609, 2010.

    Google Scholar 

  11. 11.

    Celebi, O., T. Knaus, F. Blaschke, et al. Extraordinarily favorable left ventricular reverse remodeling through long-term cardiac resynchronization: super-response to cardiac resynchronization. Pacing Clin. Electrophysiol. 35(7):870–876, 2012.

    Article  Google Scholar 

  12. 12.

    Chan, G. S. H., P. M. Middleton, B. G. Celler, L. Wang, and N. H. Lovell. Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement. Physiol. Meas. 28(4):439–452, 2007.

    Article  Google Scholar 

  13. 13.

    Chao, T.-F., S.-H. Sung, H.-M. Cheng, et al. Electromechanical activation time in the prediction of discharge outcomes in patients hospitalized with acute heart failure syndrome. Intern. Med. 49(19):2031–2037, 2010.

    Article  Google Scholar 

  14. 14.

    Cheng, H.-M., W.-C. Yu, S.-H. Sung, K.-L. Wang, S.-Y. Chuang, and C.-H. Chen. Usefulness of systolic time intervals in the identification of abnormal ventriculo-arterial coupling in stable heart failure patients. Eur. J. Heart Fail. 10(12):1192–1200, 2008.

    Article  Google Scholar 

  15. 15.

    Correale, M., A. Totaro, C. A. Greco, et al. Tissue Doppler time intervals predict the occurrence of rehospitalization in chronic heart failure: data from the daunia heart failure registry. Echocardiography 29(8):906–913, 2012.

    Article  Google Scholar 

  16. 16.

    Crow, R., P. Hannan, D. Jacobs, L. Hedquist, and D. Salerno. Relationship between seismocardiogram and echocardiogram for events in the cardiac cycle. Am. J. Noninvas. Cardiol. 8(39):39–46, 1994.

    Google Scholar 

  17. 17.

    Di Rienzo, M., E. Vaini, P. Castiglioni, et al. Wearable seismocardiography: towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects. Auton. Neurosci. 178:50–59, 2013.

    Article  Google Scholar 

  18. 18.

    Diamant, B., T. Killip, S. Seides, and R. Stanbridge. Indirect assessment of left ventricular performance in acute myocardial infarction. Circulation 42(4):579–592, 1970.

    Article  Google Scholar 

  19. 19.

    Erne, P. Beyond auscultation—acoustic cardiography in the diagnosis and assessment of cardiac disease. Swiss Med. Wkly. 8(138):439–453, 2008.

    Google Scholar 

  20. 20.

    Garrard, C. L., A. M. Weissler, and H. T. Dodge. The relationship of alterations in systolic time intervals to ejection fraction in patients with cardiac disease. Circulation 42(3):455–462, 1970.

    Article  Google Scholar 

  21. 21.

    Geeraerts, T., P. Albaladejo, A. D. Declère, J. Duranteau, J.-P. Sales, and D. Benhamou. Decrease in left ventricular ejection time on digital arterial waveform during simulated hypovolemia in normal humans. J. Trauma Inj. Infect. Crit. Care 56(4):845–849, 2004.

    Article  Google Scholar 

  22. 22.

    Gurev, V., K. Tavakolian, A. P. Blaber, B. Kaminska, and N. T. Trayanova. Mechanisms underlying isovolumic contraction and ejection peaks in seismocardiogram morphology. Med. Biol. Eng. 32(2):103–110, 2012. doi:10.5405/jmbe.847.

    Article  Google Scholar 

  23. 23.

    Hodges, M., B. L. Halpern, G. C. Friesinger, and G. R. Dagenais. Left ventricular preejection period and ejection time in patients with acute myocardial infarction. Circulation 45(5):933–942, 1972.

    Article  Google Scholar 

  24. 24.

    Khosrow-khavar, F., K. Tavakolian, A. P. Blaber, et al. Automatic annotation of seismocardiogram with high frequency precordial accelerations. IEEE J. Biomed. Heal. Informatics 19(4):1428–1434, 2015.

    Article  Google Scholar 

  25. 25.

    Lewis, R. P., R. F. Leighton, W. F. Forester, and A. M. Weissler. Systolic time intervals. Noninvasive Cardiology, New York: Grune & Stratton, 1974, pp. 300–400.

    Google Scholar 

  26. 26.

    Lewis, R. P., S. E. Rittogers, W. F. Froester, and H. Boudoulas. A critical review of the systolic time intervals. Circulation 56(2):146–158, 1977.

    Article  Google Scholar 

  27. 27.

    Lewis, P., G. Welch, F. Forester, and U. S. P. Health. Usefulness of systolic time intervals in coronary artery disease. Am. J. Cardiol. 37:787–796, 1976.

    Article  Google Scholar 

  28. 28.

    Licht, C. M. M., B. W. J. H. Penninx, and E. J. C. de Geus. Effects of antidepressants, but not psychopathology, on cardiac sympathetic control: a longitudinal study. Neuropsychopharmacology 37(11):2487–2495, 2012.

    Article  Google Scholar 

  29. 29.

    Marcus, F. I., V. Sorrell, J. Zanetti, et al. Accelerometer-derived time intervals during various pacing modes in patients with biventricular pacemakers: comparison with normals. PACE 30(12):1476–1481, 2007.

    Article  Google Scholar 

  30. 30.

    Meijer, J. H., S. Boesveldt, E. Elbertse, and H. W. Berendse. Method to measure autonomic control of cardiac function using time interval parameters from impedance cardiography. Physiol. Meas. 29(6):S383–S391, 2008. doi:10.1088/0967-3334/29/6/S32.

    Article  Google Scholar 

  31. 31.

    Oh, J. K., and J. Tajik. The return of cardiac time intervals. J. Am. Coll. Cardiol. 42(8):1471–1474, 2003.

    Article  Google Scholar 

  32. 32.

    Paiva, R. P., P. Carvalho, R. Couceiro, et al. Beat-to-beat systolic time-interval measurement from heart sounds and ECG. Physiol. Meas. 33(2):177–194, 2012.

    Article  Google Scholar 

  33. 33.

    Que, C.-L., C. Kolmaga, L.-G. Durand, S. M. Kelly, and P. T. Macklem. Phonospirometry for noninvasive measurement of ventilation: methodology and preliminary results. J. Appl. Physiol. 93(4):1515–1526, 2002.

    Article  Google Scholar 

  34. 34.

    Reant, P., M. Dijos, E. Donal, et al. Systolic time intervals as simple echocardiographic parameters of left ventricular systolic performance: correlation with ejection fraction and longitudinal two-dimensional strain. Eur. J. Echocardiogr. 11(10):834–844, 2010.

    Article  Google Scholar 

  35. 35.

    Salerno, D. M., and J. M. Zanetti. Seismocardiography for monitoring changes in left ventricular function during ischemia. Chest J. 100(4):991, 1991.

    Article  Google Scholar 

  36. 36.

    Smorenberg, A., E. J. Lust, A. Beishuizen, J. H. Meijer, R. M. Verdaasdonk, and A. B. J. Groeneveld. Systolic time intervals vs invasive predictors of fluid responsiveness after coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 44(5):891–897, 2013.

    Article  Google Scholar 

  37. 37.

    Stefadouros, M. A., and A. C. Witham. Systolic time intervals by echocardiography. Circulation. 51(1):114–117, 1975.

    Article  Google Scholar 

  38. 38.

    Stockburger, M., S. Fateh-Moghadam, A. Nitardy, et al. Baseline Doppler parameters are useful predictors of chronic left ventricular reduction in size by cardiac resynchronization therapy. Europace 10(1):69–74, 2008.

    Article  Google Scholar 

  39. 39.

    Su, H.-M., T.-H. Lin, P.-C. Hsu, et al. A comparison between brachial and echocardiographic systolic time intervals. PLoS One 8(2):e55840, 2013.

    Article  Google Scholar 

  40. 40.

    Tavakolian, K., A. P. Blaber, B. Ngai, et al. Estimation of hemodynamic parameters from seismocardiogram. Computing in Cardiology, Belfast: IEEE, 2010, pp. 1055–1058.

    Google Scholar 

  41. 41.

    Tavakolian, K., G. A. Dumont, G. Houlton, and A. P. Blaber. Precordial vibrations provide noninvasive detection of early-stage hemorrhage. Shock. 41(2):91–96, 2014.

    Article  Google Scholar 

  42. 42.

    Wang, S., Y.-Y. Lam, M. Liu, et al. Acoustic cardiography helps to identify heart failure and its phenotypes. Int. J. Cardiol. 167(3):681–686, 2013.

    Article  Google Scholar 

  43. 43.

    Weissler, A. Estimation of the risk of death after acute myocardial infarction from systolic time intervals. Br. J. Heart 64:227–229, 1990.

    Article  Google Scholar 

  44. 44.

    Weissler, A. M., W. S. Harris, and C. D. Schoenfeld. Systolic time intervals in heart failure in man. Circulation 37(2):149–159, 1968.

    Article  Google Scholar 

  45. 45.

    Willems, J. O. S. L., and H. Kesteloot. On the value of apex cardiography for timing intracardiac events. Am. J. Cardiol. 28(July):59–66, 1971.

    Article  Google Scholar 

  46. 46.

    Zanetti, J. M., and K. Tavakolian. Seismocardiography: past, present and future. IEEE EMBC, Osaka: IEEE, 2013, pp. 7004–7007.

    Google Scholar 

Download references

Conflict of Interests

The author has been partially supported by Heart Force Medical Inc. as an independent consultant in the past, and before submitting this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kouhyar Tavakolian.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavakolian, K. Systolic Time Intervals and New Measurement Methods. Cardiovasc Eng Tech 7, 118–125 (2016). https://doi.org/10.1007/s13239-016-0262-1

Download citation

Keywords

  • Pre-ejection period (PEP)
  • Left ventricular ejection time (LVET)
  • Electromechanical delay (EMD)
  • Left ventricular ejection fraction (LVEF)