Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent

Abstract

Over the last decade, there has been a significant volume of research focussed on the utilization of biodegradable polymers such as poly-l-lactide-acid (PLLA) for applications associated with cardiovascular disease. More specifically, there has been an emphasis on upgrading current clinical shortfalls experienced with conventional bare metal stents and drug eluting stents. One such approach, the adaption of fully formed polymeric stents has led to a small number of products being commercialized. Unfortunately, these products are still in their market infancy, meaning there is a clear non-occurrence of long term data which can support their mechanical performance in vivo. Moreover, the load carry capacity and other mechanical properties essential to a fully optimized polymeric stent are difficult, timely and costly to establish. With the aim of compiling rapid and representative performance data for specific stent geometries, materials and designs, in addition to reducing experimental timeframes, Computational bench testing via finite element analysis (FEA) offers itself as a very powerful tool. On this basis, the research presented in this paper is concentrated on the finite element simulation of the mechanical performance of PLLA, which is a fully biodegradable polymer, in the stent application, using a non-linear viscous material model. Three physical stent geometries, typically used for fully polymeric stents, are selected, and a comparative study is performed in relation to their short-term mechanical performance, with the aid of experimental data. From the simulated output results, an informed understanding can be established in relation to radial strength, flexibility and longitudinal resistance, that can be compared with conventional permanent metal stent functionality, and the results show that it is indeed possible to generate a PLLA stent with comparable and sufficient mechanical performance. The paper also demonstrates the attractiveness of FEA as a tool for establishing fundamental mechanical characteristics of polymeric stent performance.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. 1.

    Agrawal, C., K. Haas, D. Leopold, et al. Evaluation of poly (l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13:176–182, 1992.

    Article  Google Scholar 

  2. 2.

    Anonymous: In www.amaranthmedical.com, 2014.

  3. 3.

    Auras, R. A., L.-T. Lim, S. E. Selke, et al. Poly (Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. New York: Wiley, 2011.

    Google Scholar 

  4. 4.

    Bedoya, J., C. A. Meyer, L. H. Timmins, et al. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757, 2006.

    Article  Google Scholar 

  5. 5.

    Bergström, J., and M. Boyce. Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech. Mater. 33:523–530, 2001.

    Article  Google Scholar 

  6. 6.

    Bressloff, N. W., SP, Al-Lamee, K.: Multi-objective design refinement of coronary stents. In: ECCOMAS 2012. Vienna, Austria, 2012.

  7. 7.

    Bressloff, N. W., Pant, S., Al-Lamee, K. G. Stent. In: Google Patents, 2014.

  8. 8.

    Buckley, C., and D. Jones. Glass-rubber constitutive model for amorphous polymers near the glass transition. Polymer 36:3301–3312, 1995.

    Article  Google Scholar 

  9. 9.

    Colombo, A., and E. Karvouni. Biodegradable stents:” Fulfilling the mission and stepping away”. Circulation 102:371–373, 2000.

    Article  Google Scholar 

  10. 10.

    Anonymous: Datasheet 04. In: Physical Properties. www.purac.com, 2010.

  11. 11.

    Conway, C., F. Sharif, J. Mcgarry, et al. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:374–387, 2012.

    Article  Google Scholar 

  12. 12.

    Etave, F., G. Finet, M. Boivin, et al. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001.

    Article  Google Scholar 

  13. 13.

    Finn, A. V., G. Nakazawa, M. Joner, et al. Vascular responses to drug eluting stents. Arterioscler. Thromb. Vasc. Biol. 27:1500–1510, 2007.

    Article  Google Scholar 

  14. 14.

    Gonzalo, N., and C. Macaya. Absorbable stent: focus on clinical applications and benefits. Vasc. Health Risk Manag. 8:125, 2012.

    Article  Google Scholar 

  15. 15.

    Grabow, N., M. Schlun, K. Sternberg, et al. Mechanical properties of laser cut poly (L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. J. Biomech. Eng. 127:25, 2005.

    Article  Google Scholar 

  16. 16.

    Grogan, J., S. Leen, and P. Mchugh. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. J. Mech. Behav. Biomed. Mater. 12:129–138, 2012.

    Article  Google Scholar 

  17. 17.

    Hayman, D., C. Bergerson, S. Miller, et al. The effect of static and dynamic loading on degradation of PLLA stent fibers. J. Biomech. Eng. 136:081006, 2014.

    Article  Google Scholar 

  18. 18.

    Hsiao, H.-M., Y.-H. Chiu, K.-H. Lee, et al. Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior. Comput. Aided Design 44:757–765, 2012.

    Article  Google Scholar 

  19. 19.

    Hsiao, H., C. Yeh, C. Wang, et al. Effects of stent design on new clinical issue of longitudinal stent compression in interventional cardiology. Biomed. Microdevices 16:599–607, 2014.

    Article  Google Scholar 

  20. 20.

    Hsiao, H.-M., C. Wang, C.-T. Yeh, et al. Does the reinforcement of end rings improve longitudinal stent compression of coronary. Exp. Clin. Cardiol. 20:1914–1922, 2014.

    Google Scholar 

  21. 21.

    Hyun Kim, J., T. Jin Kang, and W.-R. Yu. Simulation of mechanical behavior of temperature-responsive braided stents made of shape memory polyurethanes. J. Biomech. 43:632–643, 2010.

    Article  Google Scholar 

  22. 22.

    Khan, K. A., and T. El-Sayed. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers. Acta Mech. 224:287–305, 2013.

    MATH  MathSciNet  Article  Google Scholar 

  23. 23.

    Leenslag, J., and A. Pennings. High-strength poly (l-lactide) fibres by a dry-spinning/hot-drawing process. Polymer 28:1695–1702, 1987.

    Article  Google Scholar 

  24. 24.

    Migliavacca, F., L. Petrini, M. Colombo, et al. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002.

    Article  Google Scholar 

  25. 25.

    Moore, J. E., J. S. Soares, and K. R. Rajagopal. Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities. Cardiovasc. Eng. Technol. 1:52–65, 2010.

    Article  Google Scholar 

  26. 26.

    Mortier, P., M. De Beule, P. Segers, et al. Virtual bench testing of new generation coronary stents. EuroIntervention 7:369–376, 2011.

    Article  Google Scholar 

  27. 27.

    Muliana, A., and K. Rajagopal. Modeling the response of nonlinear viscoelastic biodegradable polymeric stents. Int. J. Solids Struct. 49:989–1000, 2012.

    Article  Google Scholar 

  28. 28.

    Ogden, R., G. Saccomandi, and I. Sgura. Fitting hyperelastic models to experimental data. Comput. Mech. 34:484–502, 2004.

    MATH  Article  Google Scholar 

  29. 29.

    Onuma, Y., and P. W. Serruys. Bioresorbable scaffold the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123:779–797, 2011.

    Article  Google Scholar 

  30. 30.

    Ormiston, J. A., and P. W. S. Serruys. Bioabsorbable coronary stents. Circ. Cardiovasc. Interv. 2:255–260, 2009.

    Article  Google Scholar 

  31. 31.

    Ormiston, J. A., P. W. Serruys, E. Regar, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371:899–907, 2008.

    Article  Google Scholar 

  32. 32.

    Pauck, R., and B. Reddy. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med. Eng. Phys. 37:7–12, 2015.

    Article  Google Scholar 

  33. 33.

    Anon: Abaqus 6.12 Analysis User’s Manual. DS SIMULIA Corp, Providence, RI, USA, 2012.

  34. 34.

    Soares, J. S., J. E. Moore, Jr, and K. R. Rajagopal. Constitutive framework for biodegradable polymers with applications to biodegradable stents. Asaio J. 54:295, 2008.

    Article  Google Scholar 

  35. 35.

    Soares, J. S., J. E. Moore, Jr, and K. R. Rajagopal. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents. J. Med. Devices 4:041007, 2010.

    Article  Google Scholar 

  36. 36.

    Srivastava, V., S. A. Chester, and L. Anand. Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations. J. Mech. Phys. Solids 58:1100–1124, 2010.

    MATH  Article  Google Scholar 

  37. 37.

    Staehr, P.: ABSORB Bioresorbable Vascular Scaffold System. In: 17th Asian Harmonization Working Party Annual Conference, edited by Vascular, A. Taipei, 2012.

  38. 38.

    Sweeney, J., R. Spares, and M. Woodhead. A constitutive model for large multiaxial deformations of solid polypropylene at high temperature. Polym Eng. Sci. 49:1902–1908, 2009.

    Article  Google Scholar 

  39. 39.

    Tamai, H., K. Igaki, T. Tsuji, et al. A biodegradable poly-l-lactic acid coronary stent in the porcine coronary artery. J. Interv. Cardiol. 12:443–450, 1999.

    Article  Google Scholar 

  40. 40.

    Van Der Hoeven, B. L., N. M. M. Pires, H. M. Warda, et al. Drug-eluting stents: results, promises and problems. Int. J. Cardiol. 99:9–17, 2005.

    Article  Google Scholar 

  41. 41.

    Vieira, A., J. Vieira, J. Ferra, et al. Mechanical study of PLA-PCL fibers during in vitro degradation. J. Mech. Behav. Biomed. Mater. 4:451–460, 2010.

    Article  Google Scholar 

  42. 42.

    Vieira, A. C., R. M. Guedes, and V. Tita. Constitutive modeling of biodegradable polymers: Hydrolytic degradation and time-dependent behavior. Int. J. Solids Struct. 51:1164–1174, 2014.

    Article  Google Scholar 

  43. 43.

    Waksman, R. Promise and challenges of bioabsorbable stents. Catheter. Cardiovasc. Interv. 70:407–414, 2007.

    Article  Google Scholar 

  44. 44.

    Wang, Y.: Bioabsorbable scaffolds made from composites. In: Google Patents, 2013.

  45. 45.

    Weir, N., F. Buchanan, J. Orr, et al. Degradation of poly-l-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc. Inst. Mech. Eng. H J. Eng. Med. 218:307–319, 2004.

    Article  Google Scholar 

  46. 46.

    Weir, N., F. Buchanan, J. Orr, et al. Processing, annealing and sterilisation of poly-l-lactide. Biomaterials 25:3939–3949, 2004.

    Article  Google Scholar 

  47. 47.

    Welch, T. R., R. C. Eberhart, S. V. Reddy, et al. Novel bioresorbable stent design and fabrication: Congenital heart disease applications. Cardiovasc. Eng. Technol. 4:171–182, 2013.

    Article  Google Scholar 

  48. 48.

    Welt, F. G. P., and C. Rogers. Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 22:1769–1776, 2002.

    Article  Google Scholar 

  49. 49.

    Wong, Y., Z. Stachurski, and S. Venkatraman. Modeling shape memory effect in uncrosslinked amorphous biodegradable polymer. Polymer 52:874–880, 2011.

    Article  Google Scholar 

  50. 50.

    Eswaran, S. K., Kelley, J. A., Bergstrom, J. S. et al. Material Modeling of Polylactide. In: SIMULIA Customer Conference. 2011.

Download references

Acknowledgements

The authors like to acknowledge the funding of this project through a Hardiman Scholarship at NUI Galway.

Conflict of Interest

Author Anna C. Bobel, Author Susana Petisco, Author Jose R. Sarasua Author Wenxin Wang and Author Peter E. McHugh declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

No human and animal studies were carried out by the authors for this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. C. Bobel.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 121 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bobel, A.C., Petisco, S., Sarasua, J.R. et al. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Cardiovasc Eng Tech 6, 519–532 (2015). https://doi.org/10.1007/s13239-015-0235-9

Download citation

Keywords

  • Biodegradable polymer
  • Poly-l-lactid-acid (PLLA)
  • Finite-element analysis
  • Biodegradable stents
  • Radial strength
  • Computational bench test