Cardiovascular Engineering and Technology

, Volume 6, Issue 3, pp 230–241 | Cite as

Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map

  • Fangjun Shu
  • Stijn Vandenberghe
  • Jaclyn Brackett
  • James F. Antaki


Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative (\(\dot{\Phi }\)), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ–\(\dot{\Phi }\) plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.


Ventricular assist devices (VAD) Rotodynamic pumps Continuous flow Pulsatile flow Particle image velocimetry (PIV) Flow coefficient Regime map 



The authors would like to thank WorldHeart Corporation for providing the transparent pump. This project was supported in part through NIH Grant R01 HL089456.

Conflict of interest

The authors have no conflict of interest in this research.

Ethical Standards

No human or animal experiments were involved in this work.


  1. 1.
    Amacher, R., G. Ochsner, and M. Schmid Daners. Synchronized pulsatile speed control of turbodynamic left ventricular assist devices: review and prospects. Artif. Organs. 2014. doi: 10.1111/aor.12253. [Epub ahead of print].
  2. 2.
    Amin, D. V., J. F. Antaki, P. Litwak, D. Thomas, Z. Wu, Y. C. Yu, S. Choi, J. R. Boston, and B. P. Griffith. Controller for an axial-flow blood pump. Biomed. Instrum. Technol. 31(5):483–487, 1997.Google Scholar
  3. 3.
    Antaki, J. F., O. Ghattas, G. W. Burgreen, and B. He. Computational flow optimization of rotary blood pump components. Artif. Organs 19(7):608–615, 1995.CrossRefGoogle Scholar
  4. 4.
    Antaki, J. F., C. G. Diao, F. J. Shu, J. C. Wu, R. Zhao, and M. V. Kameneva. Microhaemodynamics within the blade tip clearance of a centrifugal turbodynamic blood pump. Proc. Inst. Mech. Eng. H. 222(4):573–581, 2008.CrossRefGoogle Scholar
  5. 5.
    Arvand, A., N. Hahn, M. Hormes, M. Akdis, M. Martin, and H. Reul. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics. Artif. Organs 28(10):892–898, 2004.CrossRefGoogle Scholar
  6. 6.
    Burgreen, G. W., and J. F. Antaki. CFD-based design optimization of a three-dimensional rotary blood pumps. In: Proc 6th Symp on Multidisciplinary Analysis and Optimization; Bellevue, WA, 1996.Google Scholar
  7. 7.
    Burgreen, G. W., J. F. Antaki, Z. J. Wu, and A. J. Holmes. Computational fluid dynamics as a development tool for rotary blood pumps. Artif. Organs 25(5):336–340, 2001.CrossRefGoogle Scholar
  8. 8.
    Busemann, A. Das Förderhöhenverhältnis Radialer Kreiselpumpen mit logarithmisch-spiraligen Schaufeln. ZAMM 8:372–374, 1928.CrossRefzbMATHGoogle Scholar
  9. 9.
    Chiu, W. C., M. J. Slepian, and D. Bluestein. Thrombus formation patterns in the HeartMate II ventricular assist device: clinical observations can be predicted by numerical simulations. ASAIO J. 60(2):237–240, 2014. doi: 10.1097/MAT.0000000000000034.
  10. 10.
    Day, S. W., and J. C. McDaniel. PIV measurements of flow in a centrifugal blood pump: steady flow. J. Biomed. Eng. 127:244–253, 2005.Google Scholar
  11. 11.
    Day, S. W., and J. C. McDaniel. PIV measurements of flow in a centrifugal blood pump: time-varying flow. J. Biomed. Eng. 127:254–263, 2005.Google Scholar
  12. 12.
    Deutsch, S., J. M. Tarbell, K. B. Manning, G. Rosenberg, and A. A. Fontaine. Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38:65–86, 2006.CrossRefGoogle Scholar
  13. 13.
    Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. Manning, S. Deutsch, S. F. C. Stewart, M. R. Myers, M. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133(4):041002, 2011. doi: 10.1115/1.4003440.CrossRefGoogle Scholar
  14. 14.
    Hetzer, R., M. Loebe, E. V. Potapov, Y. Weng, B. Stiller, E. Hennig, V. Alexi-Meskishvili, and P. E. Lange. Circulatory support with pneumatic paracorporeal ventricular assist device in infants and children. Ann. Thorac. Surg. 66:1498–1506, 1998.CrossRefGoogle Scholar
  15. 15.
    Jahren, S. E., G. Ochsner, F. Shu, R. Amacher, J. F. Antaki, and S. Vandenberghe. Analysis of pressure head-flow loops of pulsatile rotodynamic blood pumps. Artif. Organs. Jul 25 2013. doi: 10.1111/aor.12139.
  16. 16.
    Kirklin, J. K., D. C. Natftel, R. L. Kormos, L. W. Stevenson, F. D. Pagani, M. A. Miller, J. T. Baldwin, and J. B. Young. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J. Heart Lung Transp. 32(2):141–156, 2013.CrossRefGoogle Scholar
  17. 17.
    Pirbodaghi, T., S. Axiak, A. Weber, T. Gempp, and S. Vandenberghe. Pulsatile control of rotary blood pumps: does the modulation waveform matter? J. Thorac. Cardiovasc. Surg. 144(4):970–977, 2012.CrossRefGoogle Scholar
  18. 18.
    Shepard, D. G. Principles of turbomachinery. McMillan, 1956. ISBN 0-471-85546-4.Google Scholar
  19. 19.
    Shu, F. Flow physics of indeterminate origin nozzle jets and passive control of sprays. PhD thesis, Purdue University, West Lafayette, IN, 2005.Google Scholar
  20. 20.
    Shu, F., S. Vandenberghe, and J. F. Antaki. The importance of dQ/dt on the flow field in a turbodynamic pump with pulsatile flow. Artif. Organs 33(9):757–762, 2009.CrossRefGoogle Scholar
  21. 21.
    Starling, R. C., N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, J. E. Rame, M. A. Acker, E. H. Blackstone, J. Ehrlinger, L. Thuita, M. M. Mountis, E. G. Soltesz, B. W. Lytle, and N. G. Smedira. Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 370(1):33–40, 2014. doi: 10.1056/NEJMoa1313385.
  22. 22.
    Stewart, S. F. C., E. G. Paterson, G. W. Burgreen, P. Hariheren, M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutrch, M. R. Berman, M. R. Myers, and R. A. Malinauska. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 3(2):139–160, 2012.CrossRefGoogle Scholar
  23. 23.
    Tsukiya, T., Y. Taenaka, E. Tatsumi, and H. Takano. Visualization study of the transient flow in the centrifugal blood pump impeller. ASAIO J. 48(4):431–436, 2002.CrossRefGoogle Scholar
  24. 24.
    Vandenberghe, S., P. Segers, J. F. Antaki, B. Meyns, and P. R. Verdonck. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO J. 51(6):711–718, 2005.Google Scholar
  25. 25.
    Wu, Z. J., J. F. Antaki, G. W. Burgreen, K. C. Butler, D. C. Thomas, and B. P. Griffith. Fluid dynamic characterization of operating conditions for continuous flow blood pumps. ASAIO J. 45(5):442–449, 1999.CrossRefGoogle Scholar
  26. 26.
    Wu, Z. J., J. F. Antaki, W. R. Wagner, T. A. Snyder, B. E. Paden, and H. S. Borovetz. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 51(5):636–643, 2005.CrossRefGoogle Scholar
  27. 27.
    Wu, Z. J., R. K. Gottlieb, G. B. Burgreen, J. A. Holmes, D. C. Borzelleca, M. V. Kameneva, B. P. Griffith, and J. F. Antaki. Investigation of fluid dynamics within a miniature mixed flow blood pump. Exp. Fluids 31(6):615–629, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Fangjun Shu
    • 1
    • 2
  • Stijn Vandenberghe
    • 1
    • 3
  • Jaclyn Brackett
    • 1
  • James F. Antaki
    • 1
  1. 1.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA
  3. 3.ARTORG Center for Biomedical ResearchUniversity of BernBernSwitzerland

Personalised recommendations