Skip to main content

Advertisement

Log in

A Wavelet-Based ECG Delineation Method: Adaptation to an Experimental Electrograms with Manifested Global Ischemia

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

We present a novel wavelet-based ECG delineation method with robust classification of P wave and T wave. The work is aimed on an adaptation of the method to long-term experimental electrograms (EGs) measured on isolated rabbit heart and to evaluate the effect of global ischemia in experimental EGs on delineation performance. The algorithm was tested on a set of 263 rabbit EGs with established reference points and on human signals using standard Common Standards for Quantitative Electrocardiography Standard Database (CSEDB). On CSEDB, standard deviation (SD) of measured errors satisfies given criterions in each point and the results are comparable to other published works. In rabbit signals, our QRS detector reached sensitivity of 99.87% and positive predictivity of 99.89% despite an overlay of spectral components of QRS complex, P wave and power line noise. The algorithm shows great performance in suppressing J-point elevation and reached low overall error in both, QRS onset (SD = 2.8 ms) and QRS offset (SD = 4.3 ms) delineation. T wave offset is detected with acceptable error (SD = 12.9 ms) and sensitivity nearly 99%. Variance of the errors during global ischemia remains relatively stable, however more failures in detection of T wave and P wave occur. Due to differences in spectral and timing characteristics parameters of rabbit based algorithm have to be highly adaptable and set more precisely than in human ECG signals to reach acceptable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Addison, P. S. Wavelet transforms and the ECG: a review. Physiol. Meas. 26:155–199, 2005.

    Article  Google Scholar 

  2. Alvarado, C., J. Arregui, J. Ramos, and R. Pallas-Areny. Automatic detection of ECG ventricular activity waves using continuous spline wavelet transform. In: 2005 2nd International Conference on Electrical and Electronics Engineering (Cie), 2005, pp. 189–192.

  3. Bell, R. M., M. M. Mocanu, and D. M. Yellon. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J. Mol. Cell. Cardiol. 50:940–950, 2011.

    Article  Google Scholar 

  4. Bustamante, C. A., S. I. Duque, A. Orozco-Duque, and J. Bustamante. ECG delineation and ischemic ST-segment detection based in wavelet transform and support vector machines. In: 2013 Pan American Health Care Exchanges (PAHCE), 2013, pp. 1–7.

  5. Chouhan, V. S., and S. S. Mehta. Detection of QRS complexes in 12-lead ECG using adaptive quantized threshold. Int. J. Comput. Sci. Netw. Secur. 8:155–163, 2008.

    Google Scholar 

  6. Chouhan, V. S., S. S. Mehta, and N. S. Lingayat. Delineation of QRS-complex, P and T-wave in 12-lead ECG. Int. J. Comput. Sci. Netw. Secur. 8:185–190, 2008.

    Google Scholar 

  7. Di Marco, L. Y., and L. Chiari. A wavelet-based ECG delineation algorithm for 32-bit integer online processing. Biomed. Eng. Online 10:23, 2011.

    Article  Google Scholar 

  8. Ghaffari, A., M. R. Homaeinezhad, M. Akraminia, M. Atarod, and M. Daevaeiha. A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Med. Eng. Phys. 31:1219–1227, 2009.

    Article  Google Scholar 

  9. Go, A. S., D. Mozaffarian, and V. L. Roger. Heart disease and stroke statistics 2013 update: a report from the American Heart Association. Circulation 127:e6–e245, 2013.

    Article  Google Scholar 

  10. Graja, S., and J. M. Boucher. Hidden Markov tree model applied to ECG delineation. IEEE Trans. Instrum. Meas. 54:2163–2168, 2005.

    Article  Google Scholar 

  11. Hamilton, P. Open source ECG analysis. Comput. Cardiol. 2002:101–104, 2002.

    Article  Google Scholar 

  12. Kolarova, J., and M. Novakova. Isolated rabbit hearts—databases of EGs and MAP signals. Comput. Cardiol. 2013:551–554, 2013.

    Google Scholar 

  13. Laguna, P., R. G. Mark, A. Goldberg, and G. B. Moody. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Comput. Cardiol. 1997:673–676, 1997.

    Google Scholar 

  14. Laguna, P., D. Vigo, R. Jane, and P. Caminal. Automatic wave onset and offset determination in ECG signals: validation with the CSE database. In: Proceedings of Computers in Cardiology, 1992, pp. 167–170.

  15. Langendorff, O. Untersuchungen am überlebenden Säugethierherzen. Arch für die gesamte Physiol des Menschen und der Tiere 61:291–332, 1895.

    Article  Google Scholar 

  16. Li, C., C. Zheng, and C. Tai. Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42:21–28, 1995.

    Article  Google Scholar 

  17. Lin, C., C. Mailhes, and J.-Y. Tourneret. P- and T-wave delineation in ECG signals using a Bayesian approach and a partially collapsed Gibbs sampler. IEEE Trans. Biomed. Eng. 57:2840–2849, 2010.

    Article  Google Scholar 

  18. Mallat, S. Zero-crossings of a wavelet transform. IEEE Trans. Inf. Theory 37:1019–1033, 1991.

    Article  MathSciNet  Google Scholar 

  19. Martinez, A., R. Alcaraz, and J. J. Rieta. Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiol. Meas. 31:1467–1485, 2010.

    Article  Google Scholar 

  20. Martínez, J. P., R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51:570–581, 2004.

    Article  Google Scholar 

  21. Mehta, S. S. and N. S. Lingayat. Detection of P and T-waves in electrocardiogram. In: Proceedings of the World Congress on Engineering and Computer Science, 2008, pp. 978–984.

  22. Mehta, S. S., and N. S. Lingayat. Identification of QRS complexes in 12-lead electrocardiogram. Expert Syst. Appl. 36:820–828, 2009.

    Article  Google Scholar 

  23. Moody GB, Mark RG. The MIT-BIH arrhythmia database on CD-ROM and software for use with it. In: Proceedings of Computers in Cardiology, 1990, pp. 185–188.

  24. Pan, J., and W. J. Tompkins. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32:230–236, 1985.

    Article  Google Scholar 

  25. Sahambi, J. S., S. N. Tandon, and R. K. P. Bhatt. Using wavelet transforms for ECG characterization. IEEE Eng. Med. Biol. Mag. 16:77–83, 1997.

    Article  Google Scholar 

  26. Soria, M. L., J. P. Martinez, and P. Laguna. A multilead wavelet-based ECG delineator based on the RMS signal. Comput. Cardiol. 2006:153–156, 2006.

    Google Scholar 

  27. Vitek, M., J. Hrubes, and J. Kozumplik. A wavelet-based ECG delineation with improved P wave offset detection accuracy. Anal. Biomed. Signals Images 20:1–6, 2010.

    Google Scholar 

  28. Vitek, M., J. Hrubes, and J. Kozumplik. A wavelet-based ECG delineation in multilead ECG signals: evaluation on the CSE database. IFBME Proc. 25:177–180, 2010.

    Google Scholar 

  29. Willems, J. L., P. Arnaud, J. H. Van Bemmel, P. J. Bourdillon, R. Degani, B. Denis, I. Graham, F. M. Harms, P. W. Macfarlane, G. Mazzocca, J. Meyer, and C. Zywietz. A reference data base for multilead electrocardiographic computer measurement programs. J. Am. Coll. Cardiol. 10:1313–1321, 1987.

    Article  Google Scholar 

  30. Willems, J. L., P. Arnaud, J. H. van Bemmel, R. Degani, P. W. Macfarlane, and C. Zywietz. Common standards for quantitative electrocardiography: goals and main results. CSE Working Party. Methods Inf. Med. 29:263–271, 1990.

    Google Scholar 

Download references

Acknowledgment

The work was supported by European Regional Development Fund-Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123), grant projects of the Grant Agency GACR 102/12/2034, and MUNI/A/0957/2013.

Conflict of interest

Author Hejc, author Vitek, author Ronzhina, author Novakova, and Author Kolarova declare that they have no conflict of interest.

Statement of human studies

This manuscript does not contain any studies with human subjects performed by any of the authors.

Statement of animal studies

All animal experiments were carried out with respect to the recommendations of the European Community Guide for the Care and Use of Laboratory Animals and followed the guidelines for animal treatment approved by local authorities. All animal experiments were approved by the appropriate institutional committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Hejč.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Appendix

Appendix

In this section, we present some of important formulas which were stated, but not specifically defined, above in order to maintain clarity of the article. Constants that correspond to human-based algorithm are stated in parenthesis and vice versa. Main group contains formulas used to calculate various types of thresholds. Constants used in calculation of P wave and T wave detection time windows are listed in Table 3.

$$ \xi_{{QRS_{\text{on}} }} = 0.33(0.44) \times SD[w_{a} (n)]; a = a_{QRS}^{\text{h}} $$
(7)
$$ \xi_{{QRS_{\text{off}} }} = 0.2(0.1) \times SD [w_{a} (n) ];a = a_{QRS}^{\text{h}} $$
(8)
$$ \xi_{\text{q}} = 1.8(0.83) \times \xi_{{QRS_{\text{on}} }} $$
(9)
$$ \xi_{\text{s}} = 0.1(0.25) \times \xi_{{QRS_{\text{off}} }} $$
(10)
$$ \xi_{\text{P}} = 1.2(1.6) \times SD(w_{2} (n));a = a_{QRS}^{\text{h}} $$
(11)
$$ \xi_{{{\text{P}}_{\text{on}} }} = 0.15(0.15) \times \hbox{max} \left| {w_{a} (n)} \right|;a = a_{\text{P}} $$
(12)
$$ \xi_{{{\text{P}}_{\text{off}} }} = 0.05\left( {0.5} \right) \times \hbox{max} \left| {w_{a} (n)} \right|; a = a_{\text{P}} $$
(13)
$$ \xi_{{{\text{T}}_{\text{end}} }} = 0.55\left( {0.24} \right) \times \hbox{max} \left| {w_{a} (n)} \right|;a = a_{\text{T}} $$
(14)
Table 3 Setting of time window for P wave and T wave in rabbit (human) signals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejč, J., Vítek, M., Ronzhina, M. et al. A Wavelet-Based ECG Delineation Method: Adaptation to an Experimental Electrograms with Manifested Global Ischemia. Cardiovasc Eng Tech 6, 364–375 (2015). https://doi.org/10.1007/s13239-015-0224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0224-z

Keywords

Navigation