Skip to main content
Log in

Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments

Cardiovascular Engineering and Technology Aims and scope Submit manuscript


Pressure wave velocity (PWV) is commonly used as a clinical marker of vascular elasticity. Recent studies have increased clinical interest in also analyzing the impact of heart rate, blood pressure, and left ventricular ejection time on PWV. In this article we focus on the development of a theoretical one-dimensional model and validation via direct measurement of the impact of ejection time and peak pressure on PWV using an in vitro hemodynamic simulator. A simple nonlinear traveling wave model was developed for a compliant thin-walled elastic tube filled with an incompressible fluid. This model accounts for the convective fluid phenomena, elastic vessel deformation, radial motion, and inertia of the wall. An exact analytical solution for PWV is presented which incorporates peak pressure, ejection time, ejection volume, and modulus of elasticity. To assess arterial compliance, the solution is introduced in an alternative form, explicitly determining compliance of the wall as a function of the other variables. The model predicts PWV in good agreement with the measured values with a maximum difference of 3.0%. The results indicate an inverse quadratic relationship (\(R^{2} = .99\)) between ejection time and PWV, with ejection time dominating the PWV shifts (12%) over those observed with changes in peak pressure (2%). Our modeling and validation results both explain and support the emerging evidence that, both in clinical practice and clinical research, cardiac systolic function related variables should be regularly taken into account when interpreting arterial function indices, namely PWV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. Allen, J., and A. Murray. Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Pysiol. Meas. 24:297–307, 2003.

    Article  Google Scholar 

  2. Asamar, R. Arterial Stiffness and Pulse Wave Velocity, Clinical Applications. New York: Elsevier, 1999.

    Google Scholar 

  3. Blacher, J., R. Asmar, S. Djane, G. M. London, and M. E. Safar. Aortic pulse wave velcity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33:1111–1117, 1999.

    Article  Google Scholar 

  4. Blacher, J., A. P. Guerin, B. Pannier, et al. Impact of aortic stiffness on survival in end stage renal disease. Circulation 99(18):2434–2439, 1999.

    Article  Google Scholar 

  5. Bramwell, J. C., and A. V. Hill. Velocity of transmission of the pulse wave and elasticity of arteries. Lancet 1:891–892, 1922.

    Article  Google Scholar 

  6. Cascaval, C. R. A Boussinesq model for pressure and flow velocity waves in arterial segments. Math. Comput. Simul. 82:1047–1055, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, Y., W. Changyun, T. Guocai, B. Min, and G. Li. Continuous and noninvasive blood pressure measurement: a novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Ann. Biomed. Eng. 37(11):2222–2233, 2009.

    Article  Google Scholar 

  8. Chiu, Y. C., W. P. Arand, and G. S. Shroff. Determination of pulse wave velocities with computerized algorithms. Am. Heart J. 5(121):1460–1469, 1991.

    Article  Google Scholar 

  9. Formaggia, L., D. Lamponi, and A. Quarterroni. One dimensional models for blood flow in arteries. J. Eng. Math. 47:251–276, 2003.

    Article  MATH  Google Scholar 

  10. Freis, E. D. Hemodynamics of hypertension. Physiology 40:27, 1960.

    Google Scholar 

  11. Freis, E. D., and I. M. Khatri. Hemodynamic changes during sleep in hypertensive patients. J. Appl. Physiol. 22:867, 1967.

    Google Scholar 

  12. Fullwood, L., M. Hawkins, A. J. Cowley, and A. F. Mueller. The integrated response of the cardiovascular system to food. Digestion 52:184–193, 1992.

    Article  Google Scholar 

  13. Hughes, D., F. Babbs, and C. Geddes. Measurement of Young’s modulus of elasticity of the canine aorta with ultrasound. Ultrasound Imaging 1(4):356–367, 1979.

    Article  Google Scholar 

  14. Karr, A., and S. George. Theoretical and Experimental Determination of Arterial Pulse Propagation Speed. Illinois: Northwestern University, 1982.

    Google Scholar 

  15. Kim, E. J., C. G. Park, J. D. Park, D. J. Oh, et al. Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: invasive study. J. Hum. Hypertens. 21:141–148, 2007.

    Article  Google Scholar 

  16. Klabunde, R. Cardiovascular Physiology Concepts (2nd ed.). Philadelphia, USA: Lippincott Williams & Wilkins, 2011.

    Google Scholar 

  17. Klingensmith, M., L. Chen, S. Glasgow, T. Goers, and S. Melby (eds.). Chapter 1: General and perioperative care of the surgical patient. In: The Washington Manual of Surgery, Lippincott Williams & Wilkins, 2008.

  18. Kobayashi, T., S. Ichikawa, Y. Takeuchi, T. Togawa, and W. Chen. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 38:569–574, 2000.

    Article  Google Scholar 

  19. Kung, E., and C. Taylor. Development of a physical Windkessel module to re-create in vivo vascular flow impedance for in vitro experiments. Cardiovasc. Eng. Tech. 2(1):2–14, 2011.

    Article  Google Scholar 

  20. Laurent, S., H. S. Boulder, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27:2588–2605, 2006.

    Article  Google Scholar 

  21. Lebrun, C. E., Y. T. Van Der Schouw, A. A. Bak, et al. Arterial stiffness in postmenopausal women, determinants of pulse wave velocity. J. Hypertens. 20(11):2165–2172, 2002.

    Article  Google Scholar 

  22. London, G. M., and J. N. Cohn. Prognostic application of arterial stiffness, task forces. Am. J. Hypertens. 15(8):754–758, 2002.

    Article  Google Scholar 

  23. Meaume, S., A. Benetos, O. F. Henry, et al. Aortic pulse wave velocity predicts cardiovascular mortality in subjects > 70 years of age. Arterioscler. Thrombosis Vasc. Biol. 21:2046–2050, 2001.

    Article  Google Scholar 

  24. Nurnberger, J., A. Saez, S. Dammer, A. Mitchell, R. Wenzel, T. Philipp, and R. Schafers. Left ventricular ejection time: a potential determinant of pulse wave velocity in young, healthy males. J. Hypertens. 21(11):2125–2132, 2003.

    Article  Google Scholar 

  25. Ohnishi, H., S. Saitoh, S. Takagi, et al. Pulse wave velocity as an indicator of atherosclerosis in impaired fasting glucose, the tanno and sobetsu study. Diabetes Care 26(2):437–440, 2003.

    Article  Google Scholar 

  26. O’Rourke, M. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (5th ed.). USA: Oxford University Press, 2005.

    Google Scholar 

  27. Papageogiou, G., and N. Jones. Physical modeling of the arterial wall. Part 1: Testing of tubes of various materials. J. Biomed. Eng. 9(2):153–156, 1987.

    Article  Google Scholar 

  28. Poon, C. C. Y., and Y. T. Zhang. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 2005.

  29. Safar, M. E., O. Henry, and S. Meaume. Aortic pulse wave velocity, an independent marker of cardiovascular risk. Am. J. Geriatric Cardiol. 11:295–298, 2002.

    Article  Google Scholar 

  30. Salvi, P., C. Palombo, G. Salvl, C. Labat, G. Parati, and A. Benetos. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity. J. Appl. Physiol. 115(11):1610–1617, 2013.

    Article  Google Scholar 

  31. Sherwin, S. J., V. Franke, J. Peiro, and K. Parker. One-dimensional modeling of a vascular network in space-time variables. J. Eng. Math. 47:217–250, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  32. Sutton-Terrel, K., R. H. Mackey, R. Holukbov, et al. Measurement variation of aortic pulse wave velocity in the elderly. Am. J. Hypertens. 14:463–468, 2001.

    Article  Google Scholar 

  33. Varble, N. A Hemodynamic Investigation of a Complete Arteriovenous Model of the Arm, Arteriovenous Fistula, and Distal Revascularization and Interval Ligation. Masters Thesis, 2011. Accessed 17 Feb 2013.

  34. Vardoulis, O., T. G. Papaioannou, and N. Stergiopoulas. On the estimation of total arterial compliance from aortic pulse wave velocity. Ann. Biomed. Eng. 40(12):2619–2626, 2012.

    Article  Google Scholar 

  35. Vlachopoulos, C., K. Aznouridis, and C. Stefenadis. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. JACC 55(13):1318–1327, 2010.

    Article  Google Scholar 

  36. Whitham, G. B. Linear and Nonlinear Waves. New York: Wiley-Interscience, 1999.

    Book  MATH  Google Scholar 

Download references


The authors would like to thank Matt Waldron and Cody Cziesler for their many hours of data processing and algorithm enhancements. In addition we’d like to thank John Snyder for his insightful statistical guidance and discussions. This work was supported by a grant from the National Semiconductor Corporation.

Conflict of Interest

Jeffrey S. Lillie, Alexander S. Liberson, Doran Mix, Karl Q. Schwarz, Ankur Chandra, Daniel B. Phillips, Steven W. Day, and David A. Borkholder declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David A. Borkholder.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lillie, J.S., Liberson, A.S., Mix, D. et al. Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments. Cardiovasc Eng Tech 6, 49–58 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: