Fabrication and Evaluation of Nitinol Thin Film Heart Valves

Abstract

In recent years new innovations improved the technology of devices for transcatheter heart valve replacement. In order to fabricate an efficient, durable, less thrombogenic and very thin heart valved stent for transcatheter implantation, heart valve leaflets of Nitinol (NiTi) thin film were developed. This work presents a method to fabricate NiTi thin film leaflets for transcatheter aortic valve replacements. NiTi valve leaflets were fabricated in different film thicknesses (10, 15 and 20 µm) by magnetron sputter deposition and a subsequent forming process. Pulsatile testing was performed to investigate the transvalvular pressure differences during systole and diastole as well as the effective orifice area of the valves. Furthermore, the steady backflow leakage rate under hydrostatic pressure was evaluated. Two samples from Edwards Lifescience (SAV 19 mm, and Perimount Magna 25 mm) were taken as a reference. In this experimental study, we present first in vitro test results of the newly developed NiTi leaflets.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1.

    Bonhoeffer, P., Y. Boudjemline, S. A. Qureshi, J. Le Bidois, L. Iserin, P. Acar, J. Merckx, J. Kachaner, and D. Sidi. Percutaneous insertion of the pulmonary valve. J. Am. Coll. Cardiol. 39(10):1664–1669, 2002.

    Article  Google Scholar 

  2. 2.

    Carabello, B. A., and W. Grossman. Calculation of stenotic valve orifice area. In: Grossman’s Cardiac Catheterization, Angiography and Intervention6th, edited by D. S. Baim, and W. Grossman. Philadelphia: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  3. 3.

    Cribier, A., E. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106(24):3006–3008, 2002.

    Article  Google Scholar 

  4. 4.

    Cubeddu, R. J., and I. F. Palacios. Percutaneous heart valve replacement and repair: advances and future potential. Expert Rev. Cardiovasc. Ther. 7(7):811–821, 2009.

    Article  Google Scholar 

  5. 5.

    Lima de Miranda, R., C. Zamponi, and E. Quandt. Micropatterned freestanding superelastic TiNi films. Adv. Eng. Mater. 15(1–2):66–69, 2013.

  6. 6.

    Fanning, J. P., D. G. Platts, D. L. Walters, and J. F. Fraser. Transcatheter aortic valve implantation (TAVI): valve design and evolution. Int. J. Cardiol. 168(3):1822–1831, 2013.

    Article  Google Scholar 

  7. 7.

    Haaf, P., M. Steiner, T. Attmann, G. Pfister, J. Cremer, and G. Lutter. A novel pulse duplicator system: evaluation of different valve prostheses. Thorac. Cardiovasc. Surg. 57(1):10–17, 2009.

    Article  Google Scholar 

  8. 8.

    Habijan, T., R. Lima de Miranda, C. Zamponi, E. Quandt, C. Greulich, T. A. Schildhauer, and M. Köller. The biocompatibility and mechanical properties of cylindrical NiTi thin films produced by magnetron sputtering. Mater. Sci. Eng. C 32(8):2523–2528, 2012.

  9. 9.

    International Standard ISO 5840. Cardiovascular Implants—Cardiac Valve Prostheses. ISO, 2005.

  10. 10.

    Kiefer, P., F. Gruenwald, J. Kempfert, H. Aupperle, J. Seeburger, F. W. Mohr, and T. Walther. Crimping may affect the durability of transcatheter valves: an experimental analysis. Ann. Thorac. Surg. 92(1):155–160, 2011.

    Article  Google Scholar 

  11. 11.

    Lindroos, M., M. Kupari, J. Heikkilä, and R. Tilvis. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J. Am. Coll. Cardiol. 21(5):1220–1225, 1993.

    Article  Google Scholar 

  12. 12.

    Marquez, S., R. T. Hon, and A. Yonganathan. Comparative hydrodynamic evaluation of bioprosthetic heart valves. J. Heart Valve Dis. 10(6):802–811, 2001.

    Google Scholar 

  13. 13.

    Melzer, A., and D. Stoeckel. Function and performance of Nitinol vascular implants. Open Med. Devices J. 2(2):32–41, 2010.

    Article  Google Scholar 

  14. 14.

    Ozkan, A. Low gradient “severe” aortic stenosis with preserved left ventricular ejection fraction. Cardiovasc. Diagn. Ther. 2(1):19–27, 2012.

    MathSciNet  Google Scholar 

  15. 15.

    Ryhänen, J. Biocompatibility Evolution of Nickel-Titanium Shape Memory Alloy. Oulu, Finland: Academic Dissertation, Faculty of Medicine, University of Oulu, 1999.

  16. 16.

    Shabalovskaya, S. A. Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Bio-Med. Mater. Eng. 12(1):69–109, 2002.

    Google Scholar 

  17. 17.

    Siekmeyer, G., A. Schüßler, R. Lima de Miranda, and E. Quandt. Comparison of the fatigue performance of commercially produced samples versus sputter-deposited nitinol. J. Mater. Eng. Perform. 23(7):2437–2445, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (QU146/11-1) (LU 663/11-1).

Conflict of Interest

Authors Klaas Loger, Alexander Engel and Martin Marczynski-Bühlow declare that they have no conflict of interest. Author Rodrigo Lima de Miranda is partner of the Acquandas GmbH (Kiel) and holds several patents on shape memory thin films techniques. Author Eckhard Quandt reports funding of the project by the German Research Foundation (DFG). He is partner of the Acquandas GmbH (Kiel) and holds several patents on shape memory thin films techniques. Author Georg Lutter reports funding of the project by the German Research Foundation (DFG).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Quandt.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loger, K., de Miranda, R.L., Engel, A. et al. Fabrication and Evaluation of Nitinol Thin Film Heart Valves. Cardiovasc Eng Tech 5, 308–316 (2014). https://doi.org/10.1007/s13239-014-0194-6

Download citation

Keywords

  • Heart valves
  • Transcatheter aortic valve implantation
  • Prosthetic valves
  • Shape memory alloy
  • Nitinol