Cardiovascular Engineering and Technology

, Volume 5, Issue 4, pp 308–316 | Cite as

Fabrication and Evaluation of Nitinol Thin Film Heart Valves

  • K. Loger
  • R. Lima de Miranda
  • A. Engel
  • M. Marczynski-Bühlow
  • G. Lutter
  • E. Quandt
Article

Abstract

In recent years new innovations improved the technology of devices for transcatheter heart valve replacement. In order to fabricate an efficient, durable, less thrombogenic and very thin heart valved stent for transcatheter implantation, heart valve leaflets of Nitinol (NiTi) thin film were developed. This work presents a method to fabricate NiTi thin film leaflets for transcatheter aortic valve replacements. NiTi valve leaflets were fabricated in different film thicknesses (10, 15 and 20 µm) by magnetron sputter deposition and a subsequent forming process. Pulsatile testing was performed to investigate the transvalvular pressure differences during systole and diastole as well as the effective orifice area of the valves. Furthermore, the steady backflow leakage rate under hydrostatic pressure was evaluated. Two samples from Edwards Lifescience (SAV 19 mm, and Perimount Magna 25 mm) were taken as a reference. In this experimental study, we present first in vitro test results of the newly developed NiTi leaflets.

Keywords

Heart valves Transcatheter aortic valve implantation Prosthetic valves Shape memory alloy Nitinol 

References

  1. 1.
    Bonhoeffer, P., Y. Boudjemline, S. A. Qureshi, J. Le Bidois, L. Iserin, P. Acar, J. Merckx, J. Kachaner, and D. Sidi. Percutaneous insertion of the pulmonary valve. J. Am. Coll. Cardiol. 39(10):1664–1669, 2002.CrossRefGoogle Scholar
  2. 2.
    Carabello, B. A., and W. Grossman. Calculation of stenotic valve orifice area. In: Grossman’s Cardiac Catheterization, Angiography and Intervention6th, edited by D. S. Baim, and W. Grossman. Philadelphia: Lippincott Williams & Wilkins, 2000.Google Scholar
  3. 3.
    Cribier, A., E. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106(24):3006–3008, 2002.CrossRefGoogle Scholar
  4. 4.
    Cubeddu, R. J., and I. F. Palacios. Percutaneous heart valve replacement and repair: advances and future potential. Expert Rev. Cardiovasc. Ther. 7(7):811–821, 2009.CrossRefGoogle Scholar
  5. 5.
    Lima de Miranda, R., C. Zamponi, and E. Quandt. Micropatterned freestanding superelastic TiNi films. Adv. Eng. Mater. 15(1–2):66–69, 2013.Google Scholar
  6. 6.
    Fanning, J. P., D. G. Platts, D. L. Walters, and J. F. Fraser. Transcatheter aortic valve implantation (TAVI): valve design and evolution. Int. J. Cardiol. 168(3):1822–1831, 2013.CrossRefGoogle Scholar
  7. 7.
    Haaf, P., M. Steiner, T. Attmann, G. Pfister, J. Cremer, and G. Lutter. A novel pulse duplicator system: evaluation of different valve prostheses. Thorac. Cardiovasc. Surg. 57(1):10–17, 2009.CrossRefGoogle Scholar
  8. 8.
    Habijan, T., R. Lima de Miranda, C. Zamponi, E. Quandt, C. Greulich, T. A. Schildhauer, and M. Köller. The biocompatibility and mechanical properties of cylindrical NiTi thin films produced by magnetron sputtering. Mater. Sci. Eng. C 32(8):2523–2528, 2012.Google Scholar
  9. 9.
    International Standard ISO 5840. Cardiovascular Implants—Cardiac Valve Prostheses. ISO, 2005.Google Scholar
  10. 10.
    Kiefer, P., F. Gruenwald, J. Kempfert, H. Aupperle, J. Seeburger, F. W. Mohr, and T. Walther. Crimping may affect the durability of transcatheter valves: an experimental analysis. Ann. Thorac. Surg. 92(1):155–160, 2011.CrossRefGoogle Scholar
  11. 11.
    Lindroos, M., M. Kupari, J. Heikkilä, and R. Tilvis. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J. Am. Coll. Cardiol. 21(5):1220–1225, 1993.CrossRefGoogle Scholar
  12. 12.
    Marquez, S., R. T. Hon, and A. Yonganathan. Comparative hydrodynamic evaluation of bioprosthetic heart valves. J. Heart Valve Dis. 10(6):802–811, 2001.Google Scholar
  13. 13.
    Melzer, A., and D. Stoeckel. Function and performance of Nitinol vascular implants. Open Med. Devices J. 2(2):32–41, 2010.CrossRefGoogle Scholar
  14. 14.
    Ozkan, A. Low gradient “severe” aortic stenosis with preserved left ventricular ejection fraction. Cardiovasc. Diagn. Ther. 2(1):19–27, 2012.MathSciNetGoogle Scholar
  15. 15.
    Ryhänen, J. Biocompatibility Evolution of Nickel-Titanium Shape Memory Alloy. Oulu, Finland: Academic Dissertation, Faculty of Medicine, University of Oulu, 1999.Google Scholar
  16. 16.
    Shabalovskaya, S. A. Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Bio-Med. Mater. Eng. 12(1):69–109, 2002.Google Scholar
  17. 17.
    Siekmeyer, G., A. Schüßler, R. Lima de Miranda, and E. Quandt. Comparison of the fatigue performance of commercially produced samples versus sputter-deposited nitinol. J. Mater. Eng. Perform. 23(7):2437–2445, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • K. Loger
    • 1
  • R. Lima de Miranda
    • 1
  • A. Engel
    • 2
  • M. Marczynski-Bühlow
    • 2
  • G. Lutter
    • 2
  • E. Quandt
    • 1
  1. 1.Faculty of Engineering, Institute for Materials ScienceUniversity of KielKielGermany
  2. 2.Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, School of MedicineUniversity of KielKielGermany

Personalised recommendations