Cardiovascular Engineering and Technology

, Volume 5, Issue 1, pp 119–131 | Cite as

Cardiac Fibroblast-Derived 3D Extracellular Matrix Seeded with Mesenchymal Stem Cells as a Novel Device to Transfer Cells to the Ischemic Myocardium

  • Eric G. SchmuckEmail author
  • Jacob D. Mulligan
  • Rebecca L. Ertel
  • Nicholas A. Kouris
  • Brenda M. Ogle
  • Amish N. Raval
  • Kurt W. Saupe


Demonstrate a novel manufacturing method to generate extracellular matrix scaffolds from cardiac fibroblasts (CF-ECM) as a therapeutic mesenchymal stem cell-transfer device. Rat CF were cultured at high-density (~1.6 × 105/cm2) for 10–14 days. Cell sheets were removed from the culture dish by incubation with EDTA and decellularized with water and peracetic acid. CF-ECM was characterized by mass spectrometry, immunofluorescence and scanning electron microscopy. CF-ECM seeded with human embryonic stem cell derived mesenchymal stromal cells (hEMSCs) were transferred into a mouse myocardial infarction model. 48 h later, mouse hearts were excised and examined for CF-ECM scaffold retention and cell transfer. CF-ECM scaffolds are composed of fibronectin (82%), collagens type I (13%), type III (3.4%), type V (0.2%), type II (0.1%) elastin (1.3%) and 18 non-structural bioactive molecules. Scaffolds remained intact on the mouse heart for 48 h without the use of sutures or glue. Identified hEMSCs were distributed from the epicardium to the endocardium. High density cardiac fibroblast culture can be used to generate CF-ECM scaffolds. CF-ECM scaffolds seeded with hEMSCs can be maintained on the heart without suture or glue. hEMSC are successfully delivered throughout the myocardium.


Cardiac fibroblast Extracellular matrix Stem cell Cardiac Regeneration Heart failure Myocardial infarction 



This study was supported by the National Heart, Lung, and Blood Institute grant number 1R21HL092477 and the National Institutes of Health, under Ruth L. Kirschstein National Research Service Award T32 HL 07936 from the National Heart Lung and Blood Institute to the University of Wisconsin-Madison Cardiovascular Research Center.

Conflict of interest

Author ES, Author JM, Author RE, Author NK, Author BO, Author AR, and Author KS declare that they have no conflict of interest.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the University of Wisconsin Madison animal care and use committee.

Supplementary material

Supplementary material 1 (MPEG 11638 kb)

13239_2013_167_MOESM2_ESM.mpeg (11.4 mb)
Supplementary material 2 (MPEG 1174 kb)


  1. 1.
    Abdel-Latif, A., R. Bolli, I. M. Tleyjeh, V. M. Montori, E. C. Perin, C. A. Hornung, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med. 167(10):989–997, 2007. doi: 10.1001/archinte.167.10.989.CrossRefGoogle Scholar
  2. 2.
    Bader, A., T. Schilling, O. E. Teebken, G. Brandes, T. Herden, G. Steinhoff, et al. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 14(3):279–284, 1998.CrossRefGoogle Scholar
  3. 3.
    Badylak, S. F., D. O. Freytes, and T. W. Gilbert. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 5(1):1–13, 2009.CrossRefGoogle Scholar
  4. 4.
    Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14(11):1835–1842, 2008. doi: 10.1089/ten.tea; (2007.0264).CrossRefGoogle Scholar
  5. 5.
    Baharvand, H., M. Azarnia, K. Parivar, and S. K. Ashtiani. The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J. Mol. Cell. Cardiol. 38(3):495–503, 2005.CrossRefGoogle Scholar
  6. 6.
    Berger, S., L. Dyugovskaya, A. Polyakov, and L. Lavie. Short-term fibronectin treatment induces endothelial-like and angiogenic properties in monocyte-derived immature dendritic cells: Involvement of intracellular VEGF and MAPK regulation. Eur. J. Cell Biol. 2012. doi: 10.1016/j.ejcb.2012.02.003.Google Scholar
  7. 7.
    Bolli, R., A. R. Chugh, D. D’Amario, J. H. Loughran, M. F. Stoddard, S. Ikram, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857, 2011. doi: 10.1016/S0140-6736(11)61590-0.CrossRefGoogle Scholar
  8. 8.
    Bonios, M., J. Terrovitis, C. Y. Chang, J. M. Engles, T. Higuchi, R. Lautamaki, et al. Myocardial substrate and route of administration determine acute cardiac retention and lung bio-distribution of cardiosphere-derived cells. J. Nucl. Cardiol. 18(3):443–450, 2011. doi: 10.1007/s12350-011-9369-9.CrossRefGoogle Scholar
  9. 9.
    Booth, C., S. A. Korossis, H. E. Wilcox, K. G. Watterson, J. N. Kearney, J. Fisher, et al. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J. Heart Valve Dis. 11(4):457–462, 2002.Google Scholar
  10. 10.
    Bornstein, P. Matricellular proteins: an overview. J. Cell Commun. Signal. 3(3–4):163–165, 2009. doi: 10.1007/s12079-009-0069-z.CrossRefGoogle Scholar
  11. 11.
    Borschel, G. H., R. G. Dennis, and W. M. Kuzon, Jr. Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast. Reconstr. Surg. 113(2):595–602, 2004; (discussion 3–4).CrossRefGoogle Scholar
  12. 12.
    Brizzi, M. F., G. Tarone, and P. Defilippi. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24(5):645–651, 2012. doi: 10.1016/ Scholar
  13. 13.
    Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8(3):978–987, 2012. doi: 10.1016/j.actbio.2011.11.031.CrossRefGoogle Scholar
  14. 14.
    Bujak, M., and N. G. Frangogiannis. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74(2):184–195, 2007. doi: 10.1016/j.cardiores.2006.10.002.CrossRefGoogle Scholar
  15. 15.
    Chachques, J. C., J. C. Trainini, N. Lago, O. H. Masoli, J. L. Barisani, M. Cortes-Morichetti, et al. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant. 16(9):927–934, 2007.CrossRefGoogle Scholar
  16. 16.
    Chang, H. Y., J. T. Chi, S. Dudoit, C. Bondre, M. van de Rijn, D. Botstein, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. U.S.A. 99(20):12877–12882, 2002.CrossRefGoogle Scholar
  17. 17.
    Chimenti, I., R. R. Smith, T. S. Li, G. Gerstenblith, E. Messina, A. Giacomello, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 106(5):971–980, 2010.CrossRefGoogle Scholar
  18. 18.
    Choi, H., and A. I. Nesvizhskii. False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J. Proteome Res. 7(1):47–50, 2008. doi: 10.1021/pr700747q.CrossRefGoogle Scholar
  19. 19.
    Cortes-Morichetti, M., G. Frati, O. Schussler, J. P. Duong Van Huyen, E. Lauret, J. A. Genovese, et al. Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng. 13(11):2681–2687, 2007. doi: 10.1089/ten; (2006.0447).CrossRefGoogle Scholar
  20. 20.
    Dubey, R. K., D. G. Gillespie, Z. Mi, and E. K. Jackson. Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: role of A2B receptors. Circulation 96(8):2656–2666, 1997.CrossRefGoogle Scholar
  21. 21.
    Dvir, T., A. Kedem, E. Ruvinov, O. Levy, I. Freeman, N. Landa, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl Acad. Sci. U.S.A. 106(35):14990–14995, 2009. doi: 10.1073/pnas.0812242106.CrossRefGoogle Scholar
  22. 22.
    Forest, V. F., A. M. Tirouvanziam, C. Perigaud, S. Fernandes, M. S. Fusellier, J. C. Desfontis, et al. Cell distribution after intracoronary bone marrow stem cell delivery in damaged and undamaged myocardium: implications for clinical trials. Stem Cell Res Ther. 1(1):4, 2010.CrossRefGoogle Scholar
  23. 23.
    Freytes, D. O., L. Santambrogio, and G. Vunjak-Novakovic. Optimizing dynamic interactions between a cardiac patch and inflammatory host cells. Cells Tissues Organs 195(1–2):171–182, 2012. doi: 10.1159/000331392.CrossRefGoogle Scholar
  24. 24.
    Fries, K. M., T. Blieden, R. J. Looney, G. D. Sempowski, M. R. Silvera, R. A. Willis, et al. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin. Immunol. Immunopathol. 72(3):283–292, 1994.CrossRefGoogle Scholar
  25. 25.
    Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials 27(19):3675–3683, 2006.Google Scholar
  26. 26.
    Giraud, M. N., E. Ayuni, S. Cook, M. Siepe, T. P. Carrel, and H. T. Tevaearai. Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif. Organs 32(9):692–700, 2008. doi: 10.1111/j.1525-1594.2008.00595.x.CrossRefGoogle Scholar
  27. 27.
    Giraud, M. N., R. Flueckiger, S. Cook, E. Ayuni, M. Siepe, T. Carrel, et al. Long-term evaluation of myoblast seeded patches implanted on infarcted rat hearts. Artif. Organs 34(6):E184–E192, 2010. doi: 10.1111/j.1525-1594.2009.00979.x.CrossRefGoogle Scholar
  28. 28.
    Godier-Furnemont, A. F., T. P. Martens, M. S. Koeckert, L. Wan, J. Parks, K. Arai, et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl Acad. Sci. U.S.A. 108(19):7974–7979, 2011. doi: 10.1073/pnas.1104619108.CrossRefGoogle Scholar
  29. 29.
    Hamdi, H., V. Planat-Benard, A. Bel, E. Puymirat, R. Geha, L. Pidial, et al. Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovasc. Res. 91(3):483–491, 2011.CrossRefGoogle Scholar
  30. 30.
    Hare, J. M., J. E. Fishman, G. Gerstenblith, D. L. Difede Velazquez, J. P. Zambrano, V. Y. Suncion, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON Randomized Trial. JAMA 1–11, 2012. doi: 10.1001/jama.2012.25321.
  31. 31.
    Hare, J. M., J. H. Traverse, T. D. Henry, N. Dib, R. K. Strumpf, S. P. Schulman, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54(24):2277–2286, 2009.CrossRefGoogle Scholar
  32. 32.
    Hata, H., A. Bar, S. Dorfman, Z. Vukadinovic, Y. Sawa, A. Haverich, et al. Engineering a novel three-dimensional contractile myocardial patch with cell sheets and decellularised matrix. Eur. J. Cardiothorac. Surg. 38(4):450–455, 2010. doi: 10.1016/j.ejcts.2010.02.009.CrossRefGoogle Scholar
  33. 33.
    Hou, D., E. Youssef, T. Brinton, P. Zhang, P. Rogers, E. Price, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(9 Suppl):I150–I156, 2005.Google Scholar
  34. 34.
    Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219, 2009.CrossRefGoogle Scholar
  35. 35.
    Janssens, S., C. Dubois, J. Bogaert, K. Theunissen, C. Deroose, W. Desmet, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121, 2006.CrossRefGoogle Scholar
  36. 36.
    Kalogeropoulos, A., V. Georgiopoulou, S. B. Kritchevsky, B. M. Psaty, N. L. Smith, A. B. Newman, et al. Epidemiology of incident heart failure in a contemporary elderly cohort: the health, aging, and body composition study. Arch. Intern. Med. 169(7):708–715, 2009. doi: 10.1001/archinternmed.2009.40.CrossRefGoogle Scholar
  37. 37.
    Kawamura, M., S. Miyagawa, K. Miki, A. Saito, S. Fukushima, T. Higuchi, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126(11 Suppl 1):S29–S37, 2012. doi: 10.1161/CIRCULATIONAHA.111.084343.CrossRefGoogle Scholar
  38. 38.
    Kellar, R. S., B. R. Shepherd, D. F. Larson, G. K. Naughton, and S. K. Williams. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng. 11(11–12):1678–1687, 2005.CrossRefGoogle Scholar
  39. 39.
    Konstandin, M. H., H. Toko, G. M. Gastelum, P. J. Quijada, A. De La Torre, M. Quintana, et al. Fibronectin is essential for reparative cardiac progenitor cell response following myocardial infarction. Circ. Res. 2013. doi: 10.1161/CIRCRESAHA.113.301152.Google Scholar
  40. 40.
    Korossis, S. A., C. Booth, H. E. Wilcox, K. G. Watterson, J. N. Kearney, J. Fisher, et al. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. J. Heart Valve Dis. 11(4):463–471, 2002.Google Scholar
  41. 41.
    Kouris, N. A., J. A. Schaefer, M. Hatta, B. T. Freeman, T. J. Kamp, Y. Kawaoka, et al. Directed fusion of mesenchymal stem cells with cardiomyocytes via VSV-G facilitates stem cell programming. Stem Cells Int. 2012:414038, 2012. doi: 10.1155/2012/414038.CrossRefGoogle Scholar
  42. 42.
    Kumar, D., T. A. Hacker, J. Buck, L. F. Whitesell, E. H. Kaji, P. S. Douglas, et al. Distinct mouse coronary anatomy and myocardial infarction consequent to ligation. Coron. Artery Dis. 16(1):41–44, 2005.CrossRefGoogle Scholar
  43. 43.
    Kuwabara, I., and F. T. Liu. Galectin-3 promotes adhesion of human neutrophils to laminin. J. Immunol. 156(10):3939–3944, 1996.Google Scholar
  44. 44.
    Lekic, P. C., N. Pender, and C. A. McCulloch. Is fibroblast heterogeneity relevant to the health, diseases, and treatments of periodontal tissues? Crit. Rev. Oral Biol. Med. 8(3):253–268, 1997.CrossRefGoogle Scholar
  45. 45.
    Makkar, R. R., R. R. Smith, K. Cheng, K. Malliaras, L. E. Thomson, D. Berman, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904, 2012. doi: 10.1016/S0140-6736(12)60195-0.CrossRefGoogle Scholar
  46. 46.
    Masuda, S., T. Shimizu, M. Yamato, and T. Okano. Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60(2):277–285, 2008.CrossRefGoogle Scholar
  47. 47.
    Matsuura, K., Y. Haraguchi, T. Shimizu, and T. Okano. Cell sheet transplantation for heart tissue repair. J. Control. Rel. 169(3):336–340, 2013. doi: 10.1016/j.jconrel.2013.03.003.CrossRefGoogle Scholar
  48. 48.
    McCurdy, S. M., Q. Dai, J. Zhang, R. Zamilpa, T. A. Ramirez, T. Dayah, et al. SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 301(2):H497–H505, 2011. doi: 10.1152/ajpheart.0; (1070.2010).CrossRefGoogle Scholar
  49. 49.
    Menasche, P., O. Alfieri, S. Janssens, W. McKenna, H. Reichenspurner, L. Trinquart, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200, 2008. doi: 10.1161/CIRCULATIONAHA.107.734103.CrossRefGoogle Scholar
  50. 50.
    Meyer, G. P., K. C. Wollert, J. Lotz, J. Pirr, U. Rager, P. Lippolt, et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J. 30(24):2978–2984, 2009. doi: 10.1093/eurheartj/ehp374.CrossRefGoogle Scholar
  51. 51.
    Meyer, G. P., K. C. Wollert, J. Lotz, J. Steffens, P. Lippolt, S. Fichtner, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10):1287–1294, 2006.CrossRefGoogle Scholar
  52. 52.
    Mirotsou, M., Z. Zhang, A. Deb, L. Zhang, M. Gnecchi, N. Noiseux, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. U.S.A. 104(5):1643–1648, 2007. doi: 10.1073/pnas.0610024104.CrossRefGoogle Scholar
  53. 53.
    Miyagawa, S., A. Saito, T. Sakaguchi, Y. Yoshikawa, T. Yamauchi, Y. Imanishi, et al. Impaired myocardium regeneration with skeletal cell sheets—a preclinical trial for tissue-engineered regeneration therapy. Transplantation 90(4):364–372, 2010. doi: 10.1097/TP.0b013e3181e6f201.CrossRefGoogle Scholar
  54. 54.
    Muller-Ehmsen, J., P. Whittaker, R. A. Kloner, J. S. Dow, T. Sakoda, T. I. Long, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell. Cardiol. 34(2):107–116, 2002.CrossRefGoogle Scholar
  55. 55.
    Murry, C. E., M. H. Soonpaa, H. Reinecke, H. Nakajima, H. O. Nakajima, M. Rubart, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668, 2004.CrossRefGoogle Scholar
  56. 56.
    Pankov, R., and K. M. Yamada. Fibronectin at a glance. J. Cell Sci. 115(Pt 20):3861–3863, 2002.CrossRefGoogle Scholar
  57. 57.
    Pflieger, D., S. Chabane, O. Gaillard, B. A. Bernard, P. Ducoroy, J. Rossier, et al. Comparative proteomic analysis of extracellular matrix proteins secreted by two types of skin fibroblasts. Proteomics 6(21):5868–5879, 2006.CrossRefGoogle Scholar
  58. 58.
    Plow, E. F., T. A. Haas, L. Zhang, J. Loftus, and J. W. Smith. Ligand binding to integrins. J. Biol. Chem. 275(29):21785–21788, 2000. doi: 10.1074/jbc.R000003200.CrossRefGoogle Scholar
  59. 59.
    Qian, H., Y. Yang, J. Huang, R. Gao, K. Dou, G. Yang, et al. Intracoronary delivery of autologous bone marrow mononuclear cells radiolabeled by 18F-fluoro-deoxy-glucose: tissue distribution and impact on post-infarct swine hearts. J. Cell. Biochem. 102(1):64–74, 2007.CrossRefGoogle Scholar
  60. 60.
    Rabinovich, G. A., C. E. Sotomayor, C. M. Riera, I. Bianco, and S. G. Correa. Evidence of a role for galectin-1 in acute inflammation. Eur. J. Immunol. 30(5):1331–1339, 2000. doi:10.1002/(SICI)1521-4141(200005)30:5<1331::AID-IMMU1331>3.0.CO;2-H.CrossRefGoogle Scholar
  61. 61.
    Rane, A. A., and K. L. Christman. Biomaterials for the treatment of myocardial infarction: a 5-year update. J. Am. Coll. Cardiol. 58(25):2615–2629, 2011. doi: 10.1016/j.jacc.2011.11.001.CrossRefGoogle Scholar
  62. 62.
    Ratner, B. D., and S. J. Bryant. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75, 2004.CrossRefGoogle Scholar
  63. 63.
    Rifkin, D. B. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J. Biol. Chem. 280(9):7409–7412, 2005. doi: 10.1074/jbc.R400029200.CrossRefGoogle Scholar
  64. 64.
    Roger, V. L., A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220, 2012. doi: 10.1161/CIR.0b013e31823ac046.CrossRefGoogle Scholar
  65. 65.
    Ruoslahti, E. Fibronectin and its receptors. Annu. Rev. Biochem. 57:375–413, 1988. doi: 10.1146/ Scholar
  66. 66.
    Sano, H., D. K. Hsu, L. Yu, J. R. Apgar, I. Kuwabara, T. Yamanaka, et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J. Immunol. 165(4):2156–2164, 2000.Google Scholar
  67. 67.
    Schachinger, V., S. Erbs, A. Elsasser, W. Haberbosch, R. Hambrecht, H. Holschermann, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 355(12):1210–1221, 2006.CrossRefGoogle Scholar
  68. 68.
    Schaefer, A., C. Zwadlo, M. Fuchs, G. P. Meyer, P. Lippolt, K. C. Wollert, et al. Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trial–an echocardiographic study. Eur. J. Echocardiogr. 11(2):165–171, 2010. doi: 10.1093/ejechocard/jep191.CrossRefGoogle Scholar
  69. 69.
    Silva, E. A., and D. J. Mooney. Synthetic extracellular matrices for tissue engineering and regeneration. Curr. Top. Dev. Biol. 64:181–205, 2004.CrossRefGoogle Scholar
  70. 70.
    Singla, D. K., T. A. Hacker, L. Ma, P. S. Douglas, R. Sullivan, G. E. Lyons, et al. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J. Mol. Cell. Cardiol. 40(1):195–200, 2006.CrossRefGoogle Scholar
  71. 71.
    Tan, M. Y., W. Zhi, R. Q. Wei, Y. C. Huang, K. P. Zhou, B. Tan, et al. Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30(19):3234–3240, 2009. doi: 10.1016/j.biomaterials.2009.02.013.CrossRefGoogle Scholar
  72. 72.
    Terrovitis, J., R. Lautamaki, M. Bonios, J. Fox, J. M. Engles, J. Yu, et al. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54(17):1619–1626, 2009. doi: 10.1016/j.jacc.2009.04.097.CrossRefGoogle Scholar
  73. 73.
    Terrovitis, J. V., R. R. Smith, and E. Marban. Assessment and optimization of cell engraftment after transplantation into the heart. Circ. Res. 106(3):479–494, 2010. doi: 10.1161/CIRCRESAHA.109.208991.CrossRefGoogle Scholar
  74. 74.
    Trivedi, P., and P. Hematti. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp. Hematol. 36(3):350–359, 2008. doi: 10.1016/j.exphem.2007.10.007.Google Scholar
  75. 75.
    Valentin, J. E., A. M. Stewart-Akers, T. W. Gilbert, and S. F. Badylak. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng. Part A 15(7):1687–1694, 2009. doi: 10.1089/ten.tea; (2008.0419).CrossRefGoogle Scholar
  76. 76.
    Vunjak-Novakovic, G., N. Tandon, A. Godier, R. Maidhof, A. Marsano, T. P. Martens, et al. Challenges in cardiac tissue engineering. Tissue Eng. B 16(2):169–187, 2010. doi: 10.1089/ten.TEB; (2009.0352).CrossRefGoogle Scholar
  77. 77.
    Wei, H. J., C. H. Chen, W. Y. Lee, I. Chiu, S. M. Hwang, W. W. Lin, et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 29(26):3547–3556, 2008. doi: 10.1016/j.biomaterials.2008.05.009.CrossRefGoogle Scholar
  78. 78.
    Westermann, D., J. Mersmann, A. Melchior, T. Freudenberger, C. Petrik, L. Schaefer, et al. Biglycan is required for adaptive remodeling after myocardial infarction. Circulation 117(10):1269–1276, 2008. doi: 10.1161/CIRCULATIONAHA.107.714147.CrossRefGoogle Scholar
  79. 79.
    Willems, I. E., J. W. Arends, and M. J. Daemen. Tenascin and fibronectin expression in healing human myocardial scars. J. Pathol. 179(3):321–325, 1996. doi:10.1002/(SICI)1096-9896(199607)179:3<321::AID-PATH555>3.0.CO;2-8.CrossRefGoogle Scholar
  80. 80.
    Zimmermann, W. H., I. Melnychenko, G. Wasmeier, M. Didie, H. Naito, U. Nixdorff, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12(4):452–458, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Eric G. Schmuck
    • 1
    • 3
    Email author
  • Jacob D. Mulligan
    • 1
  • Rebecca L. Ertel
    • 1
  • Nicholas A. Kouris
    • 2
  • Brenda M. Ogle
    • 2
  • Amish N. Raval
    • 1
    • 2
  • Kurt W. Saupe
    • 1
  1. 1.Department of MedicineUniversity of Wisconsin at MadisonMadisonUSA
  2. 2.Department of Biomedical EngineeringUniversity of Wisconsin at MadisonMadisonUSA
  3. 3.H6/385 Clinical Science CenterMadisonUSA

Personalised recommendations