Abstract
Arterial tree hemodynamics can be simulated by means of several models of different level of complexity, depending on the outputs of interest and the desired degree of accuracy. In this work, several numerical comparisons of geometrical multiscale models are presented with the aim of evaluating the benefits of such complex dimensionally-heterogeneous models compared to other simplified simulations. More precisely, we present flow rate and pressure wave form comparisons between three-dimensional patient-specific geometries implicitly coupled with one-dimensional arterial tree networks and (i) a full one-dimensional arterial tree model and (ii) stand-alone three-dimensional fluid–structure interaction models with boundary data taken from precomputed full one-dimensional network simulations. On a slightly different context, we also focus on the set up and calibration of cardiovascular simulations. In particular, we perform sensitivity analyses of the main quantities of interest (flow rate, pressure, and solid wall displacement) with respect to the parameters accounting for the elastic and viscoelastic responses of the tissues surrounding the external wall of the arteries. Finally, we also compare the results of geometrical multiscale models in which the boundary solid rings of the three-dimensional geometries are fixed, with respect to those where the boundary interfaces are scaled to enforce the continuity of the vessels size with the surrounding one-dimensional arteries.
This is a preview of subscription content, access via your institution.

















References
Alastruey, J., K. H. Parker, J. Peiró, S. M. Byrd, and S. J. Sherwin. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40(8):1794–1805, 2007.
Balossino, R., G. Pennati, F. Migliavacca, L. Formaggia, A. Veneziani, M. Tuveri, and G. Dubini. Computational models to predict stenosis growth in carotid arteries: Which is the role of boundary conditions? Comput. Methods Biomech. Biomed. Eng. 12(1):113–123, 2009.
Baretta, A., C. Corsini, W. Yang, I. E. Vignon-Clementel, A. L. Marsden, J. A. Feinstein, T.-Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos. Trans. R. Soc. Lond. A 369(1954):4316–4330, 2011.
Bazilevs, Y., V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput. Mech. 43(1):3–37, 2008.
Bertoglio, C., P. Moireau, and J.-F. Gerbeau. Sequential parameter estimation for fluid-structure problems. Application to hemodynamics. Int. J. Numer. Methods Biomed. Eng. 28(4):434–455, 2012.
Blanco, P. J., R. A. Feijóo, and S. A. A. Urquiza. Unified variational approach for coupling 3D–1D models and its blood flow applications. Comput. Methods Appl. Mech. Eng. 196(41–44):4391–4410, 2007.
Blanco, P. J., J. S. Leiva , R. A. Feijóo, and G. C. Buscaglia. Black-box decomposition approach for computational hemodynamics: one-dimensional models. Comput. Methods Appl. Mech. Eng. 200(13–16):1389–1405, 2011.
Bonnemain, J., A. C. I. Malossi, M. Lesinigo, S. Deparis, A. Quarteroni, and L. K. von Segesser. Numerical simulation of left ventricular assist device implantations: comparing the ascending and the descending aorta cannulations. Med. Eng. Phys., 2013. doi:10.1016/j.medengphy.2013.03.022.
Burman, E., M. A. Fernández, and P. Hansbo. Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44(3):1248–1274, 2006.
Čanić, S., K. Ravi-Chandar, Z. Krajcer, D. Mirković, and S. Lapin. Mathematical model analysis of Wallstent® and AneuRx®: dynamic responses of bare-metal endoprosthesis compared with those of stent-graft. Tex. Heart Inst. J. 34(4):502–506, 2005.
Crosetto, P. Fluid–Structure Interaction Problems in Hemodynamics: Parallel Solvers, Preconditioners, and Applications. PhD thesis, École Polytechnique Fédérale de Lausanne, 2011. http://infoscience.epfl.ch/record/166924.
Crosetto, P., S. Deparis, L. Formaggia, G. Mengaldo, F. Nobile, and P. A. Tricerri. A comparative study of different nonlinear hyperelastic isotropic arterial wall models in patient-specific vascular flow simulations in the aortic arch. Submitted, 2012.
Crosetto, P., S. Deparis, G. Fourestey, and A. Quarteroni. Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J. Sci. Comput. 33(4):1598–1622, 2011a
Crosetto, P., P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarteroni. Fluid–structure interaction simulation of aortic blood flow. Comput. Fluids 43(1):46–57, 2011b.
D’Elia, M., and A. Veneziani. Uncertainty quantification for data assimilation in a steady incompressible Navier–Stokes problem. ESAIM Math. Model. Numer. Anal. 2013. doi:10.1051/m2an/2012056.
Euler, L. Principia pro motu sanguinis per arterias determinando (1775). Opera Posthuma Mathematica et Physica 2:814–823, 1844.
Faggiano, E., J. Bonnemain, A. Quarteroni, and S. Deparis. A patient-specific framework for the analysis of the haemodynamics in patients with ventricular assist device. Submitted, 2012.
Figueroa, C. A., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198(45–463):3583–3601, 2009.
Formaggia, L., D. Lamponi, and A. Quarteroni. One-dimensional models for blood flow in arteries. J. Eng. Math. 47(3–4):251–276, 2003.
Formaggia, L., A. Moura, and F. Nobile. On the stability of the coupling of 3D and 1D fluid–structure interaction models for blood flow simulations. ESAIM Math. Model. Numer. Anal. 41(4):743–769, 2007.
Formaggia, L., F. Nobile, A. Quarteroni, and A. Veneziani. Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2(2–3):75–83, 1999.
Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics, Vol. 1 of Modeling, Simulation & Applications. Milan: Springer, 2009.
Formaggia, L., A. Veneziani, and C. Vergara. Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Comput. Methods Appl. Mech. Eng. 199(9–12):677–688, 2010.
Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer, 1993.
Gerbeau, J.-F., M. Vidrascu, and P. Frey. Fluid–structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83(2–3):155–165, 2005.
Grinberg, L., T. Anor, J. R. Madsen, A. Yakhot, and G. E. Karniadakis. Large-scale simulation of the human arterial tree. Clin. Exp. Pharmacol. Physiol. 36(2):194–205, 2009.
Holzapfel, G. A., and R. W. Ogden. Mechanics of Biological Tissue. Berlin: Springer, 2006.
Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3):1–48, 2000.
Kanyanta, V., A. Ivankovic, and A. Karac. Validation of a fluid–structure interaction numerical model for predicting flow transients in arteries. J. Biomech. 42(11):1705–1712, 2009.
Laganà à, K., G. Dubini, F. Migliavacca, R. Pietrabissa, G. Pennati, A. Veneziani, and A. Quarteroni. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39(3):359–364, 2002.
Langewouters, G. J. Visco-Elasticity of the Human Aorta In Vitro in Relation to Pressure and Age. PhD thesis, Free University, Amsterdam, 1982.
Li, D., and A. M. Robertson. A Structural multi-mechanism damage model for cerebral arterial tissue. J. Biomech. Eng. 131(10):101013 (8 pages), 2009.
Liu, Y., C. Dang, M. Garcia, H. Gregersen, and G. S. Kassab. Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. Am. J. Physiol. Heart Circ. Physiol. 293(6):H3290–H3300, 2007.
Malossi, A. C. I. Partitioned Solution of Geometrical Multiscale Problems for the Cardiovascular System: Models, Algorithms, and Applications. PhD thesis, École Polytechnique Fédérale de Lausanne, 2012. http://infoscience.epfl.ch/record/180639.
Malossi, A. C. I., P. J. Blanco, S. Deparis, and A. Quarteroni. Algorithms for the partitioned solution of weakly coupled fluid models for cardiovascular flows. Int. J. Numer. Methods Biomed. Eng. 27(12):2035–2057, 2011.
Malossi, A. C. I., P. J. Blanco, and S. Deparis. A two-level time step technique for the partitioned solution of one-dimensional arterial networks. Comput. Methods Appl. Mech. Eng. 237–240:212–226, 2012.
Malossi, A. C. I., P. J. Blanco, P. Crosetto, S. Deparis, and A. Quarteroni. Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. SIAM J. Multiscale Model. Simul. 11(2):474–506, 2013.
Martin, V., F. Clément, A. Decoene, and J.-F. Gerbeau. Parameter identification for a one-dimensional blood flow model. In: Proceedings of the CEMRACS: Mathematics and Applications to Biology and Medicine, Vol. 14. EASIM, 2005, pp. 174–200.
Moireau, P., N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C.-A. Taylor, and J.-F. Gerbeau. External tissue support and fluid–structure simulation in blood flows. Biomech. Model. Mechanobiol. 11(1–2):1–18, 2012.
Papadakis, G. Coupling 3D and 1D fluid–structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme. Commun. Numer. Methods Eng. 25(5):533–551, 2009.
Passerini, T., M. de Luca, L. Formaggia, A. Quarteroni, A. Veneziani. A 3D/1D geometrical multiscale model of cerebral vasculature. J. Eng. Math. 64(4):319–330, 2009.
Reymond, P., Y. Bohraus, F. Perren, F. Lazeyras, N. Stergiopulos. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 301(3):H1173–H1182, 2011.
Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1):H208–H222, 2009.
Robertson, A. M., M. R. Hill, and D. Li. Structurally motivated damage models for arterial walls. Theory and application. In: Modeling of Physiological Flows, Vol. 5 of Modeling, Simulation & Applications. Milan: Springer, 2011, pp. 143–185.
Shi, Y., P. Lawford, and R. Hose. Review of Zero-D and 1-D models of blood flow in the cardiovascular system. BioMed. Eng. OnLine 10(33):1–38, 2011.
Tezduyar, T. E., and S. Sathe. Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int. J. Numer. Methods Fluids 54(6–8):855–900, 2006.
Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.
Xiao, N., J. D. Humphrey, and C. A. Figueroa. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J. Comput. Phys., 2013.
Acknowledgments
A. C. I. Malossi acknowledges the Swiss Platform for High-Performance and High-Productivity Computing (HP2C). J. Bonnemain acknowledges the Swiss National Fund (SNF) grant 323630-133898. We also acknowledge the European Research Council Advanced Grant “Mathcard, Mathematical Modelling and Simulation of the Cardiovascular System”, Project ERC-2008-AdG 227058. Last but not least, we acknowledge Pablo Blanco (LNCC), Simone Deparis (CMCS, EPFL), and Alfio Quarteroni (CMCS, EPFL) for their precious support, as well as Phylippe Reymond (LHTC, EPFL) for the 3-D geometry of the aorta. All the numerical results presented in this paper have been computed using the LifeV library (http://www.lifev.org).
Conflict of interest
All authors declare that no conflicts of interest exist.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Ajit P. Yoganathan oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Malossi, A.C.I., Bonnemain, J. Numerical Comparison and Calibration of Geometrical Multiscale Models for the Simulation of Arterial Flows. Cardiovasc Eng Tech 4, 440–463 (2013). https://doi.org/10.1007/s13239-013-0151-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13239-013-0151-9
Keywords
- Geometrical multiscale modeling
- Blood flow models
- Fluid–structure interaction
- Wave propagation
- Patient-specific geometries
- Aorta and iliac arteries
Mathematics Subject Classification (2000)
- 65M60
- 74F10
- 76D05
- 92C35