Advertisement

Cardiovascular Engineering and Technology

, Volume 4, Issue 2, pp 161–170 | Cite as

Apical-Ventricular Cannula for Aortic Valve Bypass Therapy

  • Kevin G. Soucy
  • Joel D. Graham
  • Carrie J. Benzinger
  • M. Keith Sharp
  • Guruprasad A. Giridharan
  • Michael A. Sobieski
  • Mark S. Slaughter
  • Steven C. Koenig
Article
  • 129 Downloads

Abstract

A growing number of elderly patients with significant co-morbidities do not meet the inclusion criteria for conventional cardiac surgical therapies, including aortic valve replacement and mechanical circulatory support. To meet this clinical need, an aortic valve bypass (AVB) system is being developed that may be implanted using subcostal or mini-thoracotomy surgical approaches without ventricular coring or cardiopulmonary bypass. The AVB system consists of an apical left ventricular (ALV) cannula made from pyrolytic carbon, a valved conduit with a locking mechanism, and a Nitinol clip for anastomosis to the descending aorta. To define design criteria and demonstrate efficacy, ALV cannulae with different diameters (7–14 mm), number of sideholes (6–12), sidehole size (1.9–4.6 mm wide) and tip shapes (tapered, straight) were designed, fabricated, and tested. Cannula efficacy was determined by quantifying flow rates and pressure drops across the ALV cannula using steady-state and dynamic mock circulation models simulating mild, moderate and severe aortic stenosis test conditions. Blood trauma testing was conducted to demonstrate hemocompatibility using the smallest diameter (7 mm) ALV cannula prototype fabricated from pyrolytic carbon (PYC). In vitro and blood trauma testing demonstrated that (1) the 7 mm PYC cannula did not produce significant hemolysis (<40 mg/dL pfHb), but was unable to achieve bypass flow rates above 1.4 L/min, (2) a minimum cannula diameter of 12 mm was required to produce flow rates >4.5 L/min for <10 mmHg pressure drop across the ALV cannula, and (3) the cannula tip shape did not significantly alter bypass flow rate or pressure drop. The ALV cannula may enable a minimally invasive surgical approach using a modified Seldinger’s technique for implantation in heart failure patients with aortic stenosis.

Keywords

Aortic stenosis Cannula Heart failure Ventricular unloading 

Notes

Acknowledgments

This work was supported by the Roger M. Prizant Research Trust Fund for ventricular assist device-related research at the University of Louisville.

References

  1. 1.
    Adams, C., L. R. Guo, P. M. Jones, C. Harle, J. W. Brown, J. S. Gammie, et al. Automated coring and apical connector insertion device for aortic valve bypass surgery. Ann. Thorac. Surg. 93(1):290–293, 2012.CrossRefGoogle Scholar
  2. 2.
    Ambler, G., R. Z. Omar, P. Royston, R. Kinsman, B. E. Keogh, and K. M. Taylor. Generic, simple risk stratification model for heart valve surgery. Circulation 112(2):224–231, 2005.CrossRefGoogle Scholar
  3. 3.
    ASTM F1841-97. Standard practice for assessment of hemolysis in continuous flow blood pumps, 2005.Google Scholar
  4. 4.
    ASTM F1830-97. Standard practice of for selection of blood for in vitro evaluation of blood pumps, 2005.Google Scholar
  5. 5.
    Bachman, T. N., J. K. Bhama, J. Verkaik, S. Vandenberghe, R. L. Kormos, and J. F. Antaki. In-vitro evaluation of ventricular cannulation for rotodynamic cardiac assist devices. Cardiovasc. Eng. Technol. 2(3):203–211, 2011.CrossRefGoogle Scholar
  6. 6.
    Balaras, E., K. S. Cha, B. P. Griffith, and J. S. Gammie. Treatment of aortic stenosis with aortic valve bypass (apicoaortic conduit) surgery: an assessment using computational modeling. J. Thorac. Cardiovasc. Surg. 137(3):680–687, 2009.CrossRefGoogle Scholar
  7. 7.
    Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. De Leon, Jr., D. P. Faxon, M. D. Freed, et al. Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 118(15):e523–e661, 2008.CrossRefGoogle Scholar
  8. 8.
    Borow, M., and J. G. Crowley. Evaluation of central venous catheter thrombogenicity. Acta Anaesthesiol. Scand. Suppl. 81:59–64, 1985.CrossRefGoogle Scholar
  9. 9.
    Crestanello, J. A., K. J. Zehr, R. C. Daly, T. A. Orszulak, and H. V. Schaff. Is there a role for the left ventricle apical-aortic conduit for acquired aortic stenosis? J. Heart Valve Dis. 13(1):57–62, 2004; (discussion 62–63).Google Scholar
  10. 10.
    Gammie, J. S., J. W. Brown, J. M. Brown, R. S. Poston, R. N. Pierson, 3rd, P. N. Odonkor, et al. Aortic valve bypass for the high-risk patient with aortic stenosis. Ann. Thorac. Surg. 81(5):1605–1610, 2006.CrossRefGoogle Scholar
  11. 11.
    Gammie, J. S., L. S. Krowsoski, J. M. Brown, P. N. Odonkor, C. A. Young, M. J. Santos, et al. Aortic valve bypass surgery: midterm clinical outcomes in a high-risk aortic stenosis population. Circulation 118(14):1460–1466, 2008.CrossRefGoogle Scholar
  12. 12.
    Giridharan, G. A., M. A. Sobieski, M. Ising, M. S. Slaughter, and S. C. Koenig. Blood trauma testing for mechanical circulatory support devices. Biomed. Instrum. Technol. 45(4):334–339, 2011.CrossRefGoogle Scholar
  13. 13.
    Goodman, S. L., K. S. Tweden, and R. M. Albrecht. Platelet interaction with pyrolytic carbon heart-valve leaflets. J. Biomed. Mater. Res. 32(2):249–258, 1996.CrossRefGoogle Scholar
  14. 14.
    Grigioni, M., C. Daniele, U. Morbiducci, G. D’Avenio, G. Di Benedetto, C. Del Gaudio, et al. Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow. J. Biomech. 35(12):1599–1612, 2002.CrossRefGoogle Scholar
  15. 15.
    Kameneva, M. V., G. W. Burgreen, K. Kono, B. Repko, J. F. Antaki, and M. Umezu. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50(5):418–423, 2004.CrossRefGoogle Scholar
  16. 16.
    Kirklin, J. K., D. C. Naftel, R. L. Kormos, L. W. Stevenson, F. D. Pagani, M. A. Miller, et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J. Heart Lung Transplant. 29(1):1–10, 2010.CrossRefGoogle Scholar
  17. 17.
    Koenig, S. C., G. M. Pantalos, K. J. Gillars, D. L. Ewert, K. N. Litwak, and S. W. Etoch. Hemodynamic and pressure-volume responses to continuous and pulsatile ventricular assist in an adult mock circulation. ASAIO J. 50(1):15–24, 2004.CrossRefGoogle Scholar
  18. 18.
    Koenig, S. C., C. Woolard, G. Drew, L. Unger, K. Gillars, D. Ewert, et al. Integrated data acquisition system for medical device testing and physiology research in compliance with good laboratory practices. Biomed. Instrum. Technol. 38(3):229–240, 2004.Google Scholar
  19. 19.
    Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12(3):257–273, 1972.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Mihaljevic, T., Y. Ootaki, J. O. Robertson, A. K. Durrani, K. Kamohara, M. Akiyama, et al. Beating heart cardioscopy: a platform for real-time, intracardiac imaging. Ann. Thorac. Surg. 85(3):1061–1065, 2008.CrossRefGoogle Scholar
  22. 22.
    Milano, C. A., A. A. Simeone, L. J. Blue, and J. G. Rogers. Presentation and management of left ventricular assist device inflow cannula malposition. J. Heart Lung Transplant. 30(7):838–840, 2011.CrossRefGoogle Scholar
  23. 23.
    Olcott, E. L. Pyrolytic biocarbon materials. J. Biomed. Mater. Res. 8(3):209–217, 1974.CrossRefGoogle Scholar
  24. 24.
    Padala, M., J. H. Jimenez, A. P. Yoganathan, A. Chin, and V. H. Thourani. Transapical beating heart cardioscopy technique for off-pump visualization of heart valves. J. Thorac. Cardiovasc. Surg. 144(1):231–234, 2012.CrossRefGoogle Scholar
  25. 25.
    Parsa, C. J., C. A. Milano, A. D. Proia, G. B. Mackensen, and G. C. Hughes. A previously unreported complication of apicoaortic conduit for severe aortic stenosis. Ann. Thorac. Surg. 87(3):927–928, 2009.CrossRefGoogle Scholar
  26. 26.
    Paul, R., J. Apel, S. Klaus, F. Schugner, P. Schwindke, and H. Reul. Shear stress related blood damage in laminar couette flow. Artif. Organs 27(6):517–529, 2003.CrossRefGoogle Scholar
  27. 27.
    Rhodes, N. P., T. V. Kumary, and D. F. Williams. Influence of wall shear rate on parameters of blood compatibility of intravascular catheters. Biomaterials 17(20):1995–2002, 1996.CrossRefGoogle Scholar
  28. 28.
    Richenbacher, W. E., and J. D. Marks. Cannula selection and cannulation techniques for nonpulsatile mechanical ventricular assistance. Artif. Organs 19(6):519–524, 1995.CrossRefGoogle Scholar
  29. 29.
    Schroeder, M. J., B. Perreault, D. L. Ewert, and S. C. Koenig. HEART: an automated beat-to-beat cardiovascular analysis package using Matlab. Comput. Biol. Med. 34(5):371–388, 2004.CrossRefGoogle Scholar
  30. 30.
    Seldinger, S. I. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 39(5):368–376, 1953.CrossRefGoogle Scholar
  31. 31.
    Selzman, C. H., and B. C. Sheridan. Off-pump insertion of continuous flow left ventricular assist devices. J. Card. Surg. 22(4):320–322, 2007.CrossRefGoogle Scholar
  32. 32.
    Slaughter, M. S., B. Pederson, J. D. Graham, M. A. Sobieski, and S. C. Koenig. Evaluation of new Forcefield technology: reducing platelet adhesion and cell coverage of pyrolytic carbon surfaces. J. Thorac. Cardiovasc. Surg. 142(4):921–925, 2011.CrossRefGoogle Scholar
  33. 33.
    Stauffer, C. E., J. Jeudy, M. Ghoreishi, C. Vliek, C. Young, B. Griffith, et al. Magnetic resonance investigation of blood flow after aortic valve bypass (apicoaortic conduit). Ann. Thorac. Surg. 92(4):1332–1337, 2011; (discussion 7–8).CrossRefGoogle Scholar
  34. 34.
    Sutera, S. P., and M. H. Mehrjardi. Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J. 15(1):1–10, 1975.CrossRefGoogle Scholar
  35. 35.
    Thourani, V. H., W. B. Keeling, R. A. Guyton, A. Dara, S. D. Hurst, and O. M. Lattouf. Outcomes of off-pump aortic valve bypass surgery for the relief of aortic stenosis in adults. Ann. Thorac. Surg. 91(1):131–136, 2011.CrossRefGoogle Scholar
  36. 36.
    Tuzun, E., K. Roberts, W. E. Cohn, M. Sargin, C. J. Gemmato, B. Radovancevic, et al. In vivo evaluation of the HeartWare centrifugal ventricular assist device. Tex. Heart Inst. J. 34(4):406–411, 2007.Google Scholar
  37. 37.
    Vassiliades, Jr., T. A. Off-pump apicoaortic conduit insertion for high-risk patients with aortic stenosis. Eur. J. Cardiothorac. Surg. 23(2):156–158, 2003.CrossRefGoogle Scholar
  38. 38.
    Vliek, C. J., E. Balaras, S. Li, J. Y. Lin, C. A. Young, C. R. DeFilippi, et al. Early and midterm hemodynamics after aortic valve bypass (apicoaortic conduit) surgery. Ann. Thorac. Surg. 90(1):136–143, 2010.CrossRefGoogle Scholar
  39. 39.
    Yamada, Y., T. Nishinaka, T. Mizuno, Y. Taenaka, E. Tatsumi, and K. Yamazaki. Neointima-inducing inflow cannula with titanium mesh for left ventricular assist device. J. Artif. Organs 14(4):269–275, 2011.CrossRefGoogle Scholar
  40. 40.
    Yeo, K. K., and R. I. Low. Aortic stenosis: assessment of the patient at risk. J. Interv. Cardiol. 20(6):509–516, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Kevin G. Soucy
    • 1
  • Joel D. Graham
    • 1
  • Carrie J. Benzinger
    • 1
  • M. Keith Sharp
    • 2
  • Guruprasad A. Giridharan
    • 1
  • Michael A. Sobieski
    • 1
  • Mark S. Slaughter
    • 1
  • Steven C. Koenig
    • 1
  1. 1.Cardiovascular Innovation Institute, Departments of Bioengineering and SurgeryUniversity of LouisvilleLouisvilleUSA
  2. 2.Mechanical EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations