Cardiovascular Engineering and Technology

, Volume 4, Issue 2, pp 151–160 | Cite as

The Tensile and Viscoelastic Properties of Aortic Valve Leaflets Treated with a Hyaluronidase Gradient

  • Hubert Tseng
  • Eric J. Kim
  • Patrick S. Connell
  • Salma Ayoub
  • Jay V. Shah
  • K. Jane Grande-Allen


When diseased, aortic valves are typically replaced with bioprosthetic heart valves (BPHVs), either porcine valves or bovine pericardium that are fixed in glutaraldehyde. These replacements fail within 10–15 years due to calcification and fatigue, and their failure coincides with a loss of glycosaminoglycans (GAGs). This study investigates this relationship between GAG concentration and the tensile and viscoelastic properties of aortic valve leaflets. Aortic valve leaflets were dissected from porcine hearts and digested in hyaluronidase in concentrations ranging from 0 to 5 U/mL for 0–24 h, yielding a spectrum of GAG concentrations that was measured using the uronic acid assay and confirmed by Alcian Blue staining. Digested leaflets with varying GAG concentrations were then tested in tension in the circumferential and radial directions with varying strain rate, as well as in stress relaxation. The GAG concentration of the leaflets was successfully reduced using hyaluronidase, although water content was not affected. Elastic modulus, the maximum stress, and hysteresis significantly increased with decreasing GAG concentration. Extensibility and the radius of transition curvature did not change with GAG concentration. The stress relaxation behavior and strain-rate independent nature of the leaflet did not change with GAG concentration. These results suggest that GAGs in the spongiosa lubricate tissue motion and reduce stresses experienced by the leaflet. This study forms the basis for predictive models of BPHV mechanics based on GAG concentration, and guides the rational design of future heart valve replacements.


Aortic valve Glycosaminoglycans Hyaluronidase Mechanical testing Stress relaxation Viscoelasticity 



This work was supported by a predoctoral fellowship to Hubert Tseng, and a Grant-in-Aid from the American Heart Association Southwest Affiliate. The authors thank Christopher A. Durst, Ph.D., Rice University, for his help conducting the uronic acid assay.

Supplementary material

13239_2013_122_MOESM1_ESM.docx (18.2 mb)
Supplementary material 1 (DOCX 18,658 kb)


  1. 1.
    Ansorge, H. L., S. Adams, D. E. Birk, and L. J. Soslowsky. Mechanical, compositional, and structural properties of the post-natal mouse Achilles tendon. Ann. Biomed. Eng. 39:1904–1913, 2011.CrossRefGoogle Scholar
  2. 2.
    Bhatia, A., and I. Vesely. The effect of glycosaminoglycans and hydration on the viscoelastic properties of aortic valve cusps. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3:2979–2980, 2005.Google Scholar
  3. 3.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part I: experimental results. J. Biomech. Eng. 122:23–30, 2000.CrossRefGoogle Scholar
  4. 4.
    Blumenkrantz, N., and G. Asboe-Hansen. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484–489, 1973.CrossRefGoogle Scholar
  5. 5.
    Borghi, A., S. E. P. New, A. H. Chester, P. M. Taylor, and M. H. Yacoub. Time-dependent mechanical properties of aortic valve cusps: effect of glycosaminoglycan depletion. Acta Biomater. 9(1):4645–4652, 2012.CrossRefGoogle Scholar
  6. 6.
    Carew, E. O., A. Garg, J. E. Barber, and I. Vesely. Stress relaxation preconditioning of porcine aortic valves. Ann. Biomed. Eng. 32:563–572, 2004.CrossRefGoogle Scholar
  7. 7.
    Carew, E. O., and I. Vesely. A new method of estimating gauge length for porcine aortic valve test specimens. J. Biomech. 36:1039–1042, 2003.CrossRefGoogle Scholar
  8. 8.
    Daar, E., L. King, A. Nisbet, R. B. Thorpe, and D. A. Bradley. Viscosity changes in hyaluronic acid: irradiation and rheological studies. Appl. Radiat. Isot. 68:746–750, 2010.CrossRefGoogle Scholar
  9. 9.
    Dourte, L. M., L. Pathmanathan, A. F. Jawad, R. V. Iozzo, M. J. Mienaltowski, D. E. Birk, and L. J. Soslowsky. Influence of decorin on the mechanical, compositional, and structural properties of the mouse patellar tendon. J. Biomech. Eng. 134:031005, 2012.CrossRefGoogle Scholar
  10. 10.
    Eckert, C. E., R. Fan, B. Mikulis, M. Barron, C. A. Carruthers, V. M. Friebe, N. R. Vyavahare, and M.S. Sacks. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater. 2012; Epub ahead of print.Google Scholar
  11. 11.
    Ferrans, V. J., T. L. Spray, M. E. Billingham, and W. C. Roberts. Structural changes in glutaraldehyde-treated porcine heterografts used as substitute cardiac valves. Transmission and scanning electron microscopic observations in 12 patients. Am. J. Cardiol. 41:1159–1184, 1978.CrossRefGoogle Scholar
  12. 12.
    Fessel, G., and J. G. Snedeker. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon. Matrix Biol. 28:503–510, 2009.CrossRefGoogle Scholar
  13. 13.
    Flanagan, T. C., B. Wilkins, A. Black, S. Jockenhövel, T. J. Smith, and A. S. Pandit. A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials 27:2233–2246, 2006.CrossRefGoogle Scholar
  14. 14.
    Grande-Allen, K. J., W. J. Mako, A. Calabro, Y. Shi, N. B. Ratliff, and I. Vesely. Loss of chondroitin 6-sulfate and hyaluronan from failed porcine bioprosthetic valves. J. Biomed. Mater. Res. A 65:251–259, 2003.CrossRefGoogle Scholar
  15. 15.
    Hammermeister, K. E., G. K. Sethi, W. G. Henderson, C. Oprian, T. Kim, and S. H. Rahimtoola. A comparison of outcomes in men 11 years after heart-valve replacement with a mechanical valve or bioprosthesis. Veterans Affairs Cooperative Study on Valvular Heart Disease. N. Engl. J. Med. 328:1289–1296, 1993.CrossRefGoogle Scholar
  16. 16.
    Kinsella, M. G., S. L. Bressler, and T. N. Wight. The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit. Rev. Eukaryot. Gene Expr. 14:203–234, 2004.CrossRefGoogle Scholar
  17. 17.
    Lee, J. M., D. R. Boughner, and D. W. Courtman. The glutaraldehyde-stabilized porcine aortic valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material. J. Biomed. Mater. Res. 18:79–98, 1984.CrossRefGoogle Scholar
  18. 18.
    Lee, J. M., D. W. Courtman, and D. R. Boughner. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material. J. Biomed. Mater. Res. 18:61–77, 1984.CrossRefGoogle Scholar
  19. 19.
    Lovekamp, J. J., D. T. Simionescu, J. J. Mercuri, B. Zubiate, M. S. Sacks, and N. R. Vyavahare. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials 27:1507–1518, 2006.CrossRefGoogle Scholar
  20. 20.
    Lovekamp, J. J., and N. R. Vyavahare. Periodate-mediated glycosaminoglycan stabilization in bioprosthetic heart valves. J. Biomed. Mater. Res. 56:478–486, 2001.CrossRefGoogle Scholar
  21. 21.
    Ludoweig, J., B. Vennesland, and A. Dorfman. The mechanism of action of hyaluronidase. J. Biol. Chem. 236:333–339, 1961.Google Scholar
  22. 22.
    Masters, K. S., D. N. Shah, L. A. Leinwand, and K. S. Anseth. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26:2517–2525, 2005.CrossRefGoogle Scholar
  23. 23.
    Masters, K. S., D. N. Shah, G. A. Walker, L. A. Leinwand, and K. S. Anseth. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res. A 71:172–180, 2004.CrossRefGoogle Scholar
  24. 24.
    Mercuri, J. J., J. J. Lovekamp, D. T. Simionescu, and N. R. Vyavahare. Glycosaminoglycan-targeted fixation for improved bioprosthetic heart valve stabilization. Biomaterials 28:496–503, 2007.CrossRefGoogle Scholar
  25. 25.
    Misfeld, M., and H. H. Sievers. Heart valve macro- and microstructure. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362:1421–1436, 2007.CrossRefGoogle Scholar
  26. 26.
    Missirlis, Y. F., and M. Chong. Aortic valve mechanics—Part I: material properties of natural porcine aortic valves. J. Bioeng. 2:287, 1978.Google Scholar
  27. 27.
    Pelletier, L. C., M. Carrier, Y. Leclerc, G. Lepage, P. DeGuise, and I. Dyrda. Porcine versus pericardial bioprostheses: a comparison of late results in 1,593 patients. Ann. Thorac. Surg. 47:352–361, 1989.CrossRefGoogle Scholar
  28. 28.
    Raghavan, D., D. T. Simionescu, and N. R. Vyavahare. Neomycin prevents enzyme-mediated glycosaminoglycan degradation in bioprosthetic heart valves. Biomaterials 28:2861–2868, 2007.CrossRefGoogle Scholar
  29. 29.
    Ramamurthi, A., and I. Vesely. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials 26:999–1010, 2005.CrossRefGoogle Scholar
  30. 30.
    Reed, C. C., and R. V. Iozzo. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj. J. 19:249–255, 2002.CrossRefGoogle Scholar
  31. 31.
    Robinson, P. S., T. W. Lin, P. R. Reynolds, K. A. Derwin, R. V. Iozzo, and L. J. Soslowsky. Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J. Biomech. Eng. 126:252–257, 2004.CrossRefGoogle Scholar
  32. 32.
    Rodriguez, K. J., L. M. Piechura, and K. S. Masters. Regulation of valvular interstitial cell phenotype and function by hyaluronic acid in 2-D and 3-D culture environments. Matrix Biol. 30:70–82, 2011.CrossRefGoogle Scholar
  33. 33.
    Sacks, M. S., D. B. Smith, and E. D. Hiester. The aortic valve microstructure: effects of transvalvular pressure. J. Biomed. Mater. Res. 41:131–141, 1998.CrossRefGoogle Scholar
  34. 34.
    Sauren, A. A. H. J., M. C. van Hout, A. A. van Steenhoven, F. E. Veldpaus, and J. D. Janssen. The mechanical properties of porcine aortic valve tissues. J. Biomech. 16:327–337, 1983.CrossRefGoogle Scholar
  35. 35.
    Schoen, F. J. Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J. Heart Valve Dis. 6:1–6, 1997.MathSciNetGoogle Scholar
  36. 36.
    Schoen, F. J., and R. J. Levy. Pathology of substitute heart valves: new concepts and developments. J. Card. Surg. 9:222–227, 1994.CrossRefGoogle Scholar
  37. 37.
    Shah, D. N., S. M. Recktenwall-Work, and K. S. Anseth. The effect of bioactive hydrogels on the secretion of extracellular matrix molecules by valvular interstitial cells. Biomaterials 29:2060–2072, 2008.CrossRefGoogle Scholar
  38. 38.
    Simionescu, D. T., J. J. Lovekamp, and N. R. Vyavahare. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study. J. Heart Valve Dis. 12:226–234, 2003.Google Scholar
  39. 39.
    Simionescu, D. T., J. J. Lovekamp, and N. R. Vyavahare. Glycosaminoglycan-degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration. J. Heart Valve Dis. 12:217–225, 2003.Google Scholar
  40. 40.
    Stella, J. A., J. Liao, and M. S. Sacks. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J. Biomech. 40:3169–3177, 2007.CrossRefGoogle Scholar
  41. 41.
    Stephens, E. H., C.-K. Chu, and K. J. Grande-Allen. Valve proteoglycan content and glycosaminoglycan fine structure are unique to microstructure, mechanical load and age: relevance to an age-specific tissue-engineered heart valve. Acta Biomater. 4:1148–1160, 2008.CrossRefGoogle Scholar
  42. 42.
    Stephens, E. H., N. de Jonge, M. P. McNeill, C. A. Durst, and K. J. Grande-Allen. Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng. A 16:867–878, 2010.CrossRefGoogle Scholar
  43. 43.
    Talman, E. A., and D. R. Boughner. Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart valve tissue. Ann. Thorac. Surg. 60:S369–S373, 1995.CrossRefGoogle Scholar
  44. 44.
    Talman, E. A., and D. R. Boughner. Effect of altered hydration on the internal shear properties of porcine aortic valve cusps. Ann. Thorac. Surg. 71:S375–S378, 2001.CrossRefGoogle Scholar
  45. 45.
    Thubrikar, M., W. C. Piepgrass, L. P. Bosher, and S. P. Nolan. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ. Res. 47:792–800, 1980.CrossRefGoogle Scholar
  46. 46.
    van Noort, R., S. P. Yates, T. R. Martin, A. T. Barker, and M. M. Black. A study of the effects of glutaraldehyde and formaldehyde on the mechanical behaviour of bovine pericardium. Biomaterials 3:21–26, 1982.CrossRefGoogle Scholar
  47. 47.
    Vesely, I., J. E. Barber, and N. B. Ratliff. Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J. Heart Valve Dis. 10:471–477, 2001.Google Scholar
  48. 48.
    Vesely, I., and D. Boughner. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements. J. Biomech. 22:655–671, 1989.CrossRefGoogle Scholar
  49. 49.
    Yamagata, T., H. Saito, O. Habuchi, and S. Suzuki. Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243:1523–1535, 1968.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Hubert Tseng
    • 1
  • Eric J. Kim
    • 1
  • Patrick S. Connell
    • 1
    • 2
  • Salma Ayoub
    • 1
  • Jay V. Shah
    • 1
  • K. Jane Grande-Allen
    • 1
  1. 1.Department of BioengineeringRice UniversityHoustonUSA
  2. 2.Baylor College of MedicineHoustonUSA

Personalised recommendations