Skip to main content
Log in

Echocardiographic Characterization of Postnatal Development in Mice with Reduced Arterial Elasticity

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Decreased expression of elastin results in smaller, less compliant arteries, and high blood pressure. In mice, these differences become more significant with postnatal development. It is known that arterial size and compliance directly affect cardiac function, but the temporal changes in cardiac function have not been investigated in elastin insufficient mice. The aim of this study is to correlate changes in arterial size and compliance with cardiac function in wildtype (WT) and elastin haploinsufficient (Eln +/−) mice from birth to adulthood. Ultrasound scans were performed at the ages of 3, 7, 14, 21, 30, 60, and 90 days on male and female WT and Eln +/− mice. 2-D ultrasound and pulse wave Doppler images were used to measure the dimensions and function of the left ventricle (LV), ascending aorta, and carotid arteries. Eln +/− arteries are smaller and less compliant at most ages, with significant differences from WT as early as 3 days old. Surprisingly, there are no correlations (R 2 < 0.2) between arterial size and compliance with measures of LV hypertrophy or systolic function. There are weak correlations (0.2 < R 2 < 0.5) between arterial size and compliance with measures of LV diastolic function. Eln +/− mice have similar cardiac function to WT throughout postnatal development, demonstrating the remarkable ability of the developing cardiovascular system to adapt to mechanical and hemodynamic changes. Correlations between arterial size and compliance with diastolic function show that these measures may be useful indicators of early diastolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adda, J., C. Mielot, R. Giorgi, F. Cransac, X. Zirphile, E. Donal, et al. Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: a multicenter study. Circ. Cardiovasc. Imaging. 2011. doi:10.1161/CIRCIMAGING.111.967554.

    MATH  Google Scholar 

  2. Agoston-Coldea, L., T. Mocan, and C. Bobar. Arterial stiffness and left ventricular diastolic function in the patients with hypertension. Rom. J. Intern. Med. 46(4):313–321, 2008.

    Google Scholar 

  3. Baumann, P. Q., B. E. Sobel, A. K. Tarikuz Zaman, and D. J. Schneider. Gender-dependent differences in echocardiographic characteristics of murine hearts. Echocardiography 25(7):739–748, 2008. doi:10.1111/j.1540-8175.2008.00680.x.

    Article  Google Scholar 

  4. Bose, A. K., J. W. Mathewson, B. E. Anderson, A. M. Andrews, A. Martin Gerdes, M. Benjamin Perryman, et al. Initial experience with high frequency ultrasound for the newborn C57BL mouse. Echocardiography 24(4):412–419, 2007.

    Article  Google Scholar 

  5. Carasso, S., O. Cohen, D. Mutlak, Z. Adler, J. Lessick, D. Aronson, et al. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am. J. Cardiol. 107(7):1052–1057, 2011. doi:10.1016/j.amjcard.2010.11.032.

    Article  Google Scholar 

  6. Chambers, J. The left ventricle in aortic stenosis: evidence for the use of ACE inhibitors. Heart 92(3):420–423, 2006. doi:10.1136/hrt.2005.074112.

    Article  Google Scholar 

  7. Cheng, J. K., I. Stoilov, R. P. Mecham, and J. E. Wagenseil. A fiber-based constitutive model predicts changes in amount and organization of matrix proteins with development and disease in the mouse aorta. Biomech. Model. Mechanobiol. 2012. doi:10.1007/s10237-012-0420-9.

    Google Scholar 

  8. Ewart, A. K., C. A. Morris, G. J. Ensing, J. Loker, C. Moore, M. Leppert, et al. A human vascular disorder, supravalvular aortic stenosis, maps to chromosome 7. Proc. Natl Acad. Sci. U.S.A. 90(8):3226–3230, 1993.

    Article  Google Scholar 

  9. Faury, G., M. Pezet, R. Knutsen, W. Boyle, S. Heximer, S. McLean, et al. Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J. Clin. Invest. 112(9):1419–1428, 2003. doi:10.1172/JCI19028.

    Google Scholar 

  10. Finsen, A. V., G. Christensen, and I. Sjaastad. Echocardiographic parameters discriminating myocardial infarction with pulmonary congestion from myocardial infarction without congestion in the mouse. J. Appl. Physiol. 98(2):680–689, 2005. doi:10.1152/japplphysiol.00924.2004.

    Article  Google Scholar 

  11. Fomovsky, G. M., S. Thomopoulos, and J. W. Holmes. Contribution of extracellular matrix to the mechanical properties of the heart. J. Mol. Cell. Cardiol. 48(3):490–496, 2010. doi:10.1016/j.yjmcc.2009.08.003.

    Article  Google Scholar 

  12. Ghanem, A., W. Roll, T. Hashemi, O. Dewald, P. C. Djoufack, K. B. Fink, et al. Echocardiographic assessment of left ventricular mass in neonatal and adult mice: accuracy of different echocardiographic methods. Echocardiography 23(10):900–907, 2006. doi:10.1111/j.1540-8175.2006.00323.x.

    Article  Google Scholar 

  13. Greenwald, S. E. Ageing of the conduit arteries. J. Pathol. 211(2):157–172, 2007. doi:10.1002/path.2101.

    Article  Google Scholar 

  14. Greenwald, S. E., J. E. Moore, Jr., A. Rachev, T. P. Kane, and J. J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119(4):438–444, 1997.

    Article  Google Scholar 

  15. Hamlin, S. K., P. S. Villars, J. T. Kanusky, and A. D. Shaw. Role of diastole in left ventricular function, II: diagnosis and treatment. Am. J. Crit. Care 13(6):453–466, 2004.

    Google Scholar 

  16. Hinton, Jr, R. B., C. M. Alfieri, S. A. Witt, B. J. Glascock, P. R. Khoury, D. W. Benson, et al. Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult. Am. J. Physiol. Heart Circ. Physiol. 294(6):H2480–H2488, 2008. doi:10.1152/ajpheart.91431.2007.

    Article  Google Scholar 

  17. Hirano, E., R. H. Knutsen, H. Sugitani, C. H. Ciliberto, and R. P. Mecham. Functional rescue of elastin insufficiency in mice by the human elastin gene: implications for mouse models of human disease. Circ. Res. 101(5):523–531, 2007.

    Article  Google Scholar 

  18. Huang, Y., X. Guo, and G. S. Kassab. Axial nonuniformity of geometric and mechanical properties of mouse aorta is increased during postnatal growth. Am. J. Physiol. Heart Circ. Physiol. 290(2):H657–H664, 2006.

    Article  Google Scholar 

  19. Hwang, J. W., S. J. Kang, H. S. Lim, B. J. Choi, S. Y. Choi, G. S. Hwang, et al. Impact of arterial stiffness on regional myocardial function assessed by speckle tracking echocardiography in patients with hypertension. J. Cardiovasc. Ultrasound 20(2):90–96, 2012. doi:10.4250/jcu.2012.20.2.90.

    Article  Google Scholar 

  20. Jaroch, J., K. Loboz Grudzien, Z. Bociaga, A. Kowalska, E. Kruszynska, M. Wilczynska, et al. The relationship of carotid arterial stiffness to left ventricular diastolic dysfunction in untreated hypertension. Kardiologia polska. 70(3):223–231, 2012.

    Google Scholar 

  21. Johnson, G. L., J. M. Kotchen, H. E. McKean, C. M. Cottrill, and T. A. Kotchen. Blood pressure related echocardiographic changes in adolescents and young adults. Am. Heart J. 105(1):113–118, 1983.

    Article  Google Scholar 

  22. Kelleher, C. M., S. E. McLean, and R. P. Mecham. Vascular extracellular matrix and aortic development. Curr. Top. Dev. Biol. 62:153–188, 2004.

    Article  Google Scholar 

  23. Le, V., R. Knutsen, R. Mecham, and J. Wagenseil. Decreased aortic diameter and compliance precedes blood pressure increases in postnatal development of elastin-insufficient mice. Am. J. Physiol. Heart Circ. Physiol. 301(1):H221–H229, 2011. doi:10.1152/ajpheart.00119.2011.

    Article  Google Scholar 

  24. Li, D. Y., B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, et al. Elastin is an essential determinant of arterial morphogenesis. Nature 393(6682):276–280, 1998.

    Article  Google Scholar 

  25. Li, D. Y., G. Faury, D. G. Taylor, E. C. Davis, W. A. Boyle, R. P. Mecham, et al. Novel arterial pathology in mice and humans hemizygous for elastin. J. Clin. Invest. 102(10):1783–1787, 1998.

    Article  Google Scholar 

  26. Mahoney, L. T., R. M. Schieken, W. R. Clarke, and R. M. Lauer. Left ventricular mass and exercise responses predict future blood pressure. The Muscatine Study. Hypertension 12(2):206–213, 1988.

    Article  Google Scholar 

  27. McEniery, C. M., I. B. Wilkinson, and A. P. Avolio. Age, hypertension and arterial function. Clin. Exp. Pharmacol. Physiol. 34(7):665–671, 2007. doi:10.1111/j.1440-1681.2007.04657.x.

    Article  Google Scholar 

  28. Mujumdar, V. S., and S. C. Tyagi. Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. J. Hypertens. 17(2):261–270, 1999.

    Article  Google Scholar 

  29. Nagueh, S. F. Echocardiographic assessment of left ventricular relaxation and cardiac filling pressures. Curr. Heart Failure Rep. 6(3):154–159, 2009.

    Article  Google Scholar 

  30. Nagueh, S. F., C. P. Appleton, T. C. Gillebert, P. N. Marino, J. K. Oh, O. A. Smiseth, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22(2):107–133, 2009. doi:10.1016/j.echo.2008.11.023.

    Article  Google Scholar 

  31. Osborne, L. R., D. Martindale, S. W. Scherer, X. M. Shi, J. Huizenga, H. H. Heng, et al. Identification of genes from a 500-kb region at 7q11.23 that is commonly deleted in Williams syndrome patients. Genomics 36(2):328–336, 1996. doi:10.1006/geno.1996.0469.

    Article  Google Scholar 

  32. Palmieri, V., J. N. Bella, M. J. Roman, E. Gerdts, V. Papademetriou, K. Wachtell, et al. Pulse pressure/stroke index and left ventricular geometry and function: the LIFE Study. J. Hypertens. 21(4):781–787, 2003. doi:10.1097/01.hjh.0000052491.18130.dc.

    Article  Google Scholar 

  33. Pettersen, M. D., W. Du, M. E. Skeens, and R. A. Humes. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J. Am. Soc. Echocardiogr. 21(8):922–934, 2008. doi:10.1016/j.echo.2008.02.006.

    Article  Google Scholar 

  34. Pezet, M., M. P. Jacob, B. Escoubet, D. Gheduzzi, E. Tillet, P. Perret, et al. Elastin haploinsufficiency induces alternative aging processes in the aorta. Rejuvenation Res. 11(1):97–112, 2008.

    Article  Google Scholar 

  35. Pollick, C., S. L. Hale, and R. A. Kloner. Echocardiographic and cardiac Doppler assessment of mice. J. Am. Soc. Echocardiogr. 8(5 Pt 1):602–610, 1995.

    Google Scholar 

  36. Scherrer-Crosbie, M., and H. B. Thibault. Echocardiography in translational research: of mice and men. J. Am. Soc. Echocardiogr. 21(10):1083–1092, 2008. doi:10.1016/j.echo.2008.07.001.

    Article  Google Scholar 

  37. Schillaci, G., M. R. Mannarino, G. Pucci, M. Pirro, J. Helou, G. Savarese, et al. Age-specific relationship of aortic pulse wave velocity with left ventricular geometry and function in hypertension. Hypertension 49(2):317–321, 2007. doi:10.1161/01.HYP.0000255790.98391.9b.

    Article  Google Scholar 

  38. Shapiro, L. M., and D. G. Gibson. Patterns of diastolic dysfunction in left ventricular hypertrophy. Br. Heart J. 59(4):438–445, 1988.

    Article  Google Scholar 

  39. Urbina, E. M., S. S. Gidding, W. Bao, A. S. Pickoff, K. Berdusis, and G. S. Berenson. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart Study. Circulation 91(9):2400–2406, 1995.

    Article  Google Scholar 

  40. Vinereanu, D., E. Nicolaides, L. Boden, N. Payne, C. J. Jones, and A. G. Fraser. Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart 89(4):449–450, 2003.

    Article  Google Scholar 

  41. Vriz, O., E. Bossone, M. Bettio, D. Pavan, S. Carerj, and F. Antonini-Canterin. Carotid artery stiffness and diastolic function in subjects without known cardiovascular disease. J. Am. Soc. Echocardiogr. 24(8):915–921, 2011. doi:10.1016/j.echo.2011.05.001.

    Article  Google Scholar 

  42. Wagenseil, J. E., C. H. Ciliberto, R. H. Knutsen, M. A. Levy, A. Kovacs, and R. P. Mecham. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circ. Res. 104(10):1217–1224, 2009. doi:10.1161/CIRCRESAHA.108.192054.

    Article  Google Scholar 

  43. Wagenseil, J. E., N. L. Nerurkar, R. H. Knutsen, R. J. Okamoto, D. Y. Li, and R. P. Mecham. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 289(3):H1209–H1217, 2005. doi:10.1152/ajpheart.00046.2005.

    Article  Google Scholar 

  44. Wan, W., H. Yanagisawa, and R. L. Gleason, Jr. Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann. Biomed. Eng. 38(12):3605–3617, 2010. doi:10.1007/s10439-010-0114-3.

    Article  Google Scholar 

  45. Webster, A., Le, V. P., and Wagenseil, J. E., editors. Quantifying elastin, collagen and total protein in mouse arteries. In: Biomedical Engineering Society Annual Meeting, Austin, TX, 2010.

  46. Yanagisawa, H., E. C. Davis, B. C. Starcher, T. Ouchi, M. Yanagisawa, J. A. Richardson, et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415(6868):168–171, 2002.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded, in part, by National Institutes of Health grants R00 HL087653, R01 HL105314, and R01 HL115560. Dr. Robert Mecham at the Washington University School of Medicine is gratefully acknowledged for providing the Eln +/− mice. The Saint Louis University Center for Cardiovascular Research is gratefully acknowledged for providing the ultrasound equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Wagenseil.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 109 kb)

Supplementary material 2 (MPG 2114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, V.P., Wagenseil, J.E. Echocardiographic Characterization of Postnatal Development in Mice with Reduced Arterial Elasticity. Cardiovasc Eng Tech 3, 424–438 (2012). https://doi.org/10.1007/s13239-012-0108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-012-0108-4

Keywords

Navigation