Contractile Protein and Extracellular Matrix Secretion of Cell Monolayer Sheets Following Cyclic Stretch


Cell therapy treatment of post-myocardial infarction patients aims to regenerate tissue to improve function and prevent scarring. Although scaffold-free cell sheets offer an attractive solution, the monolayers are limited currently in their integrity as the individual layers do not cyclically stretch and cannot match the mechanical force transduction of the myocardium. In this study, we have explored stretching HL-1 mouse cardiomyocytes and embryonic stem cells derived into cardiomyocytes cultured in monolayers, and on temperature-responsive substrates to increase contractile protein and extracellular matrix (ECM) secretion for the purpose of reinforcing the baseline proteins and ECM. Sheets of HL-1 cells were stretched at 3 conditions (5, 10, 19%) along with static, unstretched controls at 1 Hz for 24 h. Embryonic stem cells derived into cardiomyocytes were stretched at 0 and 10% at 1 Hz for 24 h. Contractile proteins α- and β-myosin heavy chain (αMHC and βMHC) and sarcomeric α-actinin exhibited a significant increase in protein expression at 10% elongation strain. Atrial natriuretic factor (ANF) and connexin43 (Cx43) mRNA expression increased between static and conditioned cells; however, mRNA and protein expression at 19% strain increased less than cyclically strained cells at 5% strain. ECM secretion was not found to increase with conditioning. Effective engineering of cell monolayers with improved mechanical integrity may require an optimal strain condition to achieve maximum expression.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1.

    Alpert, N. R., and L. A. Mulieri. Functional consequences of altered cardiac myosin isoenzymes. Med. Sci. Sports Exerc. 18(3):309–313, 1986.

    Article  Google Scholar 

  2. 2.

    Assmus, B., A. Rolf, S. Erbs, A. Elsasser, W. Haberbosch, R. Hambrecht, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ. Heart Fail. 3(1):89–96, 2010.

    Article  Google Scholar 

  3. 3.

    Assmus, B., V. Schachinger, C. Teupe, M. Britten, R. Lehmann, N. Dobert, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106(24):3009–3017, 2002.

    Article  Google Scholar 

  4. 4.

    Athanasiou, K. A., G. G. Niederauer, and C. M. Agrawal. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102, 1996.

    Article  Google Scholar 

  5. 5.

    Bel, A., V. Planat-Bernard, A. Saito, L. Bonnevie, V. Bellamy, L. Sabbah, et al. Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 122(11 Suppl):S118–S123, 2010.

    Article  Google Scholar 

  6. 6.

    Bostman, O. M., and H. K. Pihlajamaki. Adverse tissue reactions to bioabsorbable fixation devices. Clin. Orthop. Relat. Res. 371:216–227, 2000.

    Article  Google Scholar 

  7. 7.

    Britten, M. B., N. D. Abolmaali, B. Assmus, R. Lehmann, J. Honold, J. Schmitt, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108(18):2212–2218, 2003.

    Article  Google Scholar 

  8. 8.

    Coppen, S. R., S. Fukushima, Y. Shintani, K. Takahashi, A. Varela-Carver, H. Salem, et al. A factor underlying late-phase arrhythmogenicity after cell therapy to the heart: global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation. Circulation 118(14 Suppl):S138–S144, 2008.

    Article  Google Scholar 

  9. 9.

    Dill, T., V. Schachinger, A. Rolf, S. Mollmann, H. Thiele, H. Tillmanns, et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am. Heart J. 157(3):541–547, 2009.

    Article  Google Scholar 

  10. 10.

    Dimmeler, S., A. M. Zeiher, and M. D. Schneider. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Investig. 115(3):572–583, 2005.

    Google Scholar 

  11. 11.

    Dow, J., B. Z. Simkhovich, L. Kedes, and R. A. Kloner. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc. Res. 67(2):301–307, 2005.

    Article  Google Scholar 

  12. 12.

    Flores, M. G., M. Hasegawa, M. Yamato, R. Takagi, T. Okano, and I. Ishikawa. Cementum-periodontal ligament complex regeneration using the cell sheet technique. J. Periodontal Res. 43(3):364–371, 2008.

    Article  Google Scholar 

  13. 13.

    Fomovsky, G. M., S. Thomopoulos, and J. W. Holmes. Contribution of extracellular matrix to the mechanical properties of the heart. J. Mol. Cell. Cardiol. 48(3):490–496, 2010.

    Article  Google Scholar 

  14. 14.

    Fujita, H., K. Shimizu, and E. Nagamori. Application of a cell sheet-polymer film complex with temperature sensitivity for increased mechanical strength and cell alignment capability. Biotechnol. Bioeng. 103(2):370–377, 2009.

    Article  Google Scholar 

  15. 15.

    Gardner, D. G., H. Wirtz, and L. G. Dobbs. Stretch-dependent regulation of atrial peptide synthesis and secretion in cultured atrial cardiocytes. Am. J. Physiol. 263(2 Pt 1):E239–E244, 1992.

    Google Scholar 

  16. 16.

    Haraguchi, Y., T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27(27):4765–4774, 2006.

    Article  Google Scholar 

  17. 17.

    Haraguchi, Y., T. Shimizu, M. Yamato, and T. Okano. Electrical interaction between cardiomyocyte sheets separated by non-cardiomyocyte sheets in heterogeneous tissues. J. Tissue Eng. Regenerative Med. 4(4):291–299, 2010.

    Article  Google Scholar 

  18. 18.

    Hirose, M., O. H. Kwon, M. Yamato, A. Kikuchi, and T. Okano. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1(3):377–381, 2000.

    Article  Google Scholar 

  19. 19.

    Hudson, W., M. C. Collins, D. deFreitas, Y. S. Sun, B. Muller-Borer, and A. P. Kypson. Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J. Surg. Res. 142(2):263–267, 2007.

    Article  Google Scholar 

  20. 20.

    Iyer, R. K., L. L. Chiu, L. A. Reis, and M. Radisic. Engineered cardiac tissues. Curr. Opin. Biotechnol. 2011.

  21. 21.

    Jawad, H., N. N. Ali, A. R. Lyon, Q. Z. Chen, S. E. Harding, and A. R. Boccaccini. Myocardial tissue engineering: a review. J. Tissue Eng. Regen. Med. 1(5):327–342, 2007.

    Article  Google Scholar 

  22. 22.

    Komuro, I., S. Kudo, T. Yamazaki, Y. Zou, I. Shiojima, and Y. Yazaki. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 10(5):631–636, 1996.

    Google Scholar 

  23. 23.

    Lee, E. L., and H. A. von Recum. Cell culture platform with mechanical conditioning and nondamaging cellular detachment. J. Biomed. Mater. Res. 93(2):411–418, 2010.

    Google Scholar 

  24. 24.

    Leistner, D. M., U. Fischer-Rasokat, J. Honold, F. H. Seeger, V. Schachinger, R. Lehmann, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clin. Res. Cardiol. 100(10):925–934, 2011.

    Google Scholar 

  25. 25.

    Malliaras, K., and E. Marban. Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Brit. Med. Bull. 98:161–185, 2011.

    Article  Google Scholar 

  26. 26.

    Menasche, P., O. Alfieri, S. Janssens, W. McKenna, H. Reichenspurner, L. Trinquart, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200, 2008.

    Article  Google Scholar 

  27. 27.

    Meyer, G. P., K. C. Wollert, J. Lotz, J. Steffens, P. Lippolt, S. Fichtner, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10):1287–1294, 2006.

    Article  Google Scholar 

  28. 28.

    Miyagawa, S., A. Saito, T. Sakaguchi, Y. Yoshikawa, T. Yamauchi, Y. Imanishi, et al. Impaired myocardium regeneration with skeletal cell sheets—a preclinical trial for tissue-engineered regeneration therapy. Transplantation 90(4):364–372, 2010.

    Article  Google Scholar 

  29. 29.

    Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917, 2009.

    Article  Google Scholar 

  30. 30.

    Nyolczas, N., M. Gyongyosi, G. Beran, M. Dettke, S. Graf, H. Sochor et al. Design and rationale for the Myocardial Stem Cell Administration After Acute Myocardial Infarction (MYSTAR) Study: a multicenter, prospective, randomized, single-blind trial comparing early and late intracoronary or combined (percutaneous intramyocardial and intracoronary) administration of nonselected autologous bone marrow cells to patients after acute myocardial infarction. Am. Heart J. 153(2):212 e1–212 e17, 2007.

    Google Scholar 

  31. 31.

    Orlic, D., J. Kajstura, S. Chimenti, I. Jakoniuk, S. M. Anderson, B. Li, et al. Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705, 2001.

    Article  Google Scholar 

  32. 32.

    Penn, M. S., and H. A. von Recum. A tale of two biologies: stem cell patch: myocardial interactions are criticial for myocardial regeneration. J. Am. Coll. Cardiol. 58(20):2128–2129, 2011.

    Google Scholar 

  33. 33.

    Pietak, A., A. McGregor, S. Gauthier, R. Oleschuk, and S. D. Waldman. Are micropatterned substrates for directed cell organization an effective method to create ordered 3D tissue constructs? J. Tissue Eng. Regenerative Med. 2(7):450–453, 2008.

    Article  Google Scholar 

  34. 34.

    Radisic, M., J. Malda, E. Epping, W. Geng, R. Langer, and G. Vunjak-Novakovic. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93(2):332–343, 2006.

    Article  Google Scholar 

  35. 35.

    Rana, O. R., C. Zobel, E. Saygili, K. Brixius, F. Gramley, T. Schimpf, et al. A simple device to apply equibiaxial strain to cells cultured on flexible membranes. Am. J. Physiol. Heart Circ. Physiol. 294(1):H532–H540, 2008.

    Article  Google Scholar 

  36. 36.

    Raskin, A. M., M. Hoshijima, E. Swanson, A. D. McCulloch, and J. H. Omens. Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle. Mol Cell Biomech. 6(3):145–159, 2009.

    Google Scholar 

  37. 37.

    Sadoshima, J., L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol. Chem. 267(15):10551–10560, 1992.

    Google Scholar 

  38. 38.

    Sarig, U., and M. Machluf. Engineering cell platforms for myocardial regeneration. Expert Opin. Biol. Ther. 11(8):1055–1077, 2011.

    Article  Google Scholar 

  39. 39.

    Saygili, E., O. R. Rana, C. Meyer, C. Gemein, M. G. Andrzejewski, A. Ludwig, et al. The angiotensin-calcineurin-NFAT pathway mediates stretch-induced up-regulation of matrix metalloproteinases-2/-9 in atrial myocytes. Basic Res. Cardiol. 104(4):435–448, 2009.

    Article  Google Scholar 

  40. 40.

    Schachinger, V., B. Assmus, M. B. Britten, J. Honold, R. Lehmann, C. Teupe, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol. 44(8):1690–1699, 2004.

    Article  Google Scholar 

  41. 41.

    Sekine, H., T. Shimizu, I, Dobashi, K. Matsuura, N. Hagiwara, M. Takahashi et al. Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng. 2011.

  42. 42.

    Shimizu, T., H. Sekine, Y. Isoi, M. Yamato, A. Kikuchi, and T. Okano. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 12(3):499–507, 2006.

    Article  Google Scholar 

  43. 43.

    Shimizu, T., H. Sekine, M. Yamato, and T. Okano. Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue. Curr. Pharm. Des. 15(24):2807–2814, 2009.

    Article  Google Scholar 

  44. 44.

    Smets, F. N., Y. Chen, L. J. Wang, and H. E. Soriano. Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes. Mol. Genet. Metab. 75(4):344–352, 2002.

    Article  Google Scholar 

  45. 45.

    Stevens, K. R., K. L. Kreutziger, S. K. Dupras, F. S. Korte, M. Regnier, V. Muskheli, et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl Acad. Sci. USA 106(39):16568–16573, 2009.

    Article  Google Scholar 

  46. 46.

    van Wamel, A. J., C. Ruwhof, L. J. van der Valk-Kokshoorn, P. I. Schrier, and A. van der Laarse. Rapid effects of stretched myocardial and vascular cells on gene expression of neonatal rat cardiomyocytes with emphasis on autocrine and paracrine mechanisms. Arch. Biochem. Biophys. 381(1):67–73, 2000.

    Article  Google Scholar 

  47. 47.

    Villet, O. M., A. Siltanen, T. Patila, M. A. Mahar, A. Vento, E. Kankuri, et al. Advances in cell transplantation therapy for diseased myocardium. Stem Cells Int. 2011:679171, 2011.

    Google Scholar 

  48. 48.

    Wang, F., and J. Guan. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Deliv. Rev. 62(7–8):784–797, 2010.

    Article  Google Scholar 

  49. 49.

    Williams, C., A. W. Xie, M. Yamato, T. Okano, and J. Y. Wong. Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure. Biomaterials 32(24):5625–5632, 2011.

    Article  Google Scholar 

  50. 50.

    Wolf, D., A. Reinhard, A. Seckinger, L. Gross, H. A. Katus, and A. Hansen. Regenerative capacity of intravenous autologous, allogeneic and human mesenchymal stem cells in the infarcted pig myocardium-complicated by myocardial tumor formation. Scand. Cardiovasc. J. 43(1):39–45, 2009.

    Article  Google Scholar 

  51. 51.

    Yamazaki, T., I. Komuro, S. Kudoh, Y. Zou, I. Shiojima, T. Mizuno, et al. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J. Clin. Investig. 96(1):438–446, 1995.

    Article  Google Scholar 

  52. 52.

    Yang, J., M. Yamato, K. Nishida, Y. Hayashida, T. Shimizu, A. Kikuchi, et al. Corneal epithelial stem cell delivery using cell sheet engineering: not lost in transplantation. J. Drug Target. 14(7):471–482, 2006.

    Article  Google Scholar 

  53. 53.

    Yoon, Y. S., J. S. Park, T. Tkebuchava, C. Luedeman, and D. W. Losordo. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109(25):3154–3157, 2004.

    Article  Google Scholar 

  54. 54.

    Yousef, M., C. M. Schannwell, M. Kostering, T. Zeus, M. Brehm, and B. E. Strauer. The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 53(24):2262–2269, 2009.

    Article  Google Scholar 

  55. 55.

    Zakharova, L., D. Mastroeni, N. Mutlu, M. Molina, S. Goldman, E. Diethrich, et al. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res. 87(1):40–49, 2010.

    Article  Google Scholar 

  56. 56.

    Zhang, M., D. Methot, V. Poppa, Y. Fujio, K. Walsh, and C. E. Murry. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell Cardiol. 33(5):907–921, 2001.

    Article  Google Scholar 

  57. 57.

    Zhang, H., P. Song, Y. Tang, X. L. Zhang, S. H. Zhao, Y. J. Wei, et al. Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution. J. Thorac. Cardiovasc. Surg. 134(5):1234–1240, 2007.

    Article  Google Scholar 

Download references


This work was supported by a Predoctoral Fellowship from the American Heart Association for E. L. Lee and a pilot award from the National Center for Regenerative Medicine, Case Western Reserve University.

Author information



Corresponding author

Correspondence to Horst A. von Recum.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, E.L., Watson, K.C. & von Recum, H.A. Contractile Protein and Extracellular Matrix Secretion of Cell Monolayer Sheets Following Cyclic Stretch. Cardiovasc Eng Tech 3, 302–310 (2012).

Download citation


  • Cardiomyocytes
  • Mechanical conditioning
  • Hypertrophy
  • Cell monolayers