Cardiovascular Engineering and Technology

, Volume 3, Issue 2, pp 139–160 | Cite as

Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA’s First Computational Interlaboratory Study

  • Sandy F. C. Stewart
  • Eric G. Paterson
  • Greg W. Burgreen
  • Prasanna Hariharan
  • Matthew Giarra
  • Varun Reddy
  • Steven W. Day
  • Keefe B. Manning
  • Steven Deutsch
  • Michael R. Berman
  • Matthew R. Myers
  • Richard A. Malinauskas


While computational fluid dynamics (CFD) is commonly used for medical device development, its usefulness for demonstrating device safety has not been proven. Reliable standardized methods for this specialized need are lacking and are inhibiting the use of computational methods in the regulatory review of medical devices. To meet this need, participants from academia, industry, and the U.S. Food and Drug Administration recently completed a computational interlaboratory study to determine the suitability and methodology for simulating fluid flow in an idealized medical device. A technical working committee designed the study, defined the model geometry and flow conditions, and identified comparison metrics. The model geometry was a 0.012 m diameter cylindrical nozzle with a conical collector and sudden expansion on either side of a 0.04 m long, 0.004 m diameter throat, which is able to cause hemolysis under certain flow conditions. Open invitations to participate in the study were extended through professional societies and organizations. Twenty-eight groups from around the world submitted simulation results for five flow rates, spanning laminar, transitional, and turbulent flows. Concurrently, three laboratories generated experimental validation data on geometrically similar physical models using particle image velocimetry. The simulations showed considerable variation from each other and from experiment. One main source of error involved turbulence model underestimations of the centerline velocities in the inlet and throat regions, because the flow was laminar in these regions. Turbulence models were also unable to accurately predict velocities and shear stresses in the recirculation zones downstream of the sudden expansion. The wide variety in results suggest that CFD studies used to assess safety in medical device submissions to the FDA require careful experimental validation. Better transitional models are needed, as many medical devices operate in the transitional regime. It is imperative that the community undertake and publish quality validation cases of biofluid dynamics and blood damage that include complications such as pulsatility, secondary flows, and short and/or curved inlets and outlets. The results of this interlaboratory study will be available in a benchmark database to help develop improved modeling techniques, and consensus standards and guidelines for using CFD in the evaluation of medical devices.


Computational fluid dynamics Experimental validation Medical devices Blood damage 


  1. 1.
    Bludszuweit, C. Model for a general mechanical blood damage prediction. Artif. Organs 19:583–589, 1995.CrossRefGoogle Scholar
  2. 2.
    Burgreen, G. W., J. F. Antaki, Z. J. Wu, and A. J. Holmes. Computational fluid dynamics as a development tool for rotary blood pumps. Artif. Organs 25:336–340, 2001.CrossRefGoogle Scholar
  3. 3.
    de Wachter, D., and P. Verdonck. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif. Organs 26:576–582, 2002.CrossRefGoogle Scholar
  4. 4.
    Dumont, K., J. Vierendeels, R. Kaminsky, G. van Nooten, P. Verdonck, and D. Bluestein. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129:558–565, 2007.CrossRefGoogle Scholar
  5. 5.
    Dwyer, H. A., P. B. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. S. Guy, and E. E. Tseng. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9:301–308, 2009.CrossRefGoogle Scholar
  6. 6.
    Fallon, A. M., L. P. Dasi, U. M. Marzec, S. R. Hanson, and A. P. Yoganathan. Procoagulant properties of flow fields in stenotic and expansive orifices. Ann. Biomed. Eng. 36:1–13, 2008.CrossRefGoogle Scholar
  7. 7.
    Fiore, G. B., U. Morbiducci, R. Ponzini, and A. Redaelli. Bubble tracking through computational fluid dynamics in arterial line filters for cardiopulmonary bypass. ASAIO J. 55:438–444, 2009.CrossRefGoogle Scholar
  8. 8.
    Gach, H. M., and I. J. Lowe. Measuring flow reattachment lengths downstream of a stenosis using MRI. J. Magn. Reson. Imaging 12:939–948, 2000.CrossRefGoogle Scholar
  9. 9.
    Garon, A., and M. I. Farinas. Fast three-dimensional numerical hemolysis approximation. Artif. Organs 28:1016–1025, 2004.CrossRefGoogle Scholar
  10. 10.
    Ge, L., H. L. Leo, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. 127:782–797, 2005.CrossRefGoogle Scholar
  11. 11.
    Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13:300–306, 1990.Google Scholar
  12. 12.
    Goubergrits, L., and K. Affeld. Numerical estimation of blood damage in artificial organs. Artif. Organs 28:499–507, 2004.CrossRefGoogle Scholar
  13. 13.
    Grigioni, M., U. Morbiducci, G. D’Avenio, G. D. Benedetto, and C. D. Gaudio. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model. Mechanobiol. 4:249–260, 2005.CrossRefGoogle Scholar
  14. 14.
    Gross, J. M., M. C. Shu, F. F. Dai, J. Ellis, and A. P. Yoganathan. A microstructural flow analysis within a bileaflet mechanical heart valve hinge. J. Heart Valve Dis. 5:581–590, 1996.Google Scholar
  15. 15.
    Hariharan, P., M. Giarra, V. Reddy, S. Day, K. B. Manning, S. Deutsch, S. F. C. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Experimental particle image velocimetry protocol and results database for validating computational fluid dynamic simulations of the FDA benchmark nozzle model. J. Biomech. Eng. 133:041002, 2011.CrossRefGoogle Scholar
  16. 16.
    He, Y., N. Duraiswamy, A. O. Frank, and J. E. Moore, Jr. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127:637–647, 2005.CrossRefGoogle Scholar
  17. 17.
    Hinds, M. T., Y. J. Park, S. A. Jones, D. P. Giddens, and B. R. Alevriadou. Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin. J. Biomech. 34:95–103, 2001.CrossRefGoogle Scholar
  18. 18.
    Izraelev, V., W. J. Weiss, B. Fritz, R. K. Newswanger, E. G. Paterson, A. Snyder, R. B. Medvitz, J. Cysyk, W. E. Pae, D. Hicks, B. Lukic, and G. Rosenberg. A passively suspended Tesla pump left ventricular assist device. ASAIO J. 55:556–561, 2009.CrossRefGoogle Scholar
  19. 19.
    Kameneva, M. V., G. W. Burgreen, K. Kono, B. Repko, J. F. Antaki, and M. Umezu. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50:418–423, 2004.CrossRefGoogle Scholar
  20. 20.
    Larsson, L., F. Stern, V. Bertram. Benchmarking of computational fluid dynamics for ship flows: the Gothenburg 2000 workshop. J. Ship. Res. 47:63–81, 2003.Google Scholar
  21. 21.
    Longest, P. W., and C. Kleinstreuer. Comparison of blood particle deposition models for non-parallel flow domains. J. Biomech. 36:421–430, 2003.CrossRefGoogle Scholar
  22. 22.
    Nobili, M., U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. Maria Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J. Biomech. 41:2539–2550, 2008.CrossRefGoogle Scholar
  23. 23.
    Oberkampf, W. L., and M. F. Barone. Measures of agreement between computation and experiment: validation metrics. J. Comput. Phys. 217:5–36, 2006.MATHCrossRefGoogle Scholar
  24. 24.
    Oberkampf, W. L., T. G. Trucano, and C. Hirsch. Verification validation and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57:345–384, 2004.CrossRefGoogle Scholar
  25. 25.
    Pant, S., N. W. Bressloff, A. I. Forrester, and N. Curzen. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38:1893–1907, 2010.CrossRefGoogle Scholar
  26. 26.
    Pinotti, M., and E. S. Rosa. Computational prediction of hemolysis in a centrifugal ventricular assist device. Artif. Organs 19:267–273, 1995.CrossRefGoogle Scholar
  27. 27.
    Raz, S., S. Einav, Y. Alemu, and D. Bluestein. DPIV prediction of flow induced platelet activation–comparison to numerical predictions. Ann. Biomed. Eng. 35:493–504, 2007.CrossRefGoogle Scholar
  28. 28.
    Sutera, S. P. Flow-induced trauma to blood cells. Circ. Res. 41:2–11, 1977.Google Scholar
  29. 29.
    Takano, T., S. Schulte-Eistrup, S. Kawahito, T. Maeda, K. Nonaka, J. Linneweber, J. Glueck, A. Fujisawa, K. Makinouchi, M. Yokokawa, and Y. Nosé. Inlet port positioning for a miniaturized centrifugal blood pump. Artif. Organs 26:45–48, 2002.CrossRefGoogle Scholar
  30. 30.
    Tamagawa, M., H. Kaneda, M. Hiramoto, and S. Nagahama. Simulation of thrombus formation in shear flows using lattice Boltzmann method. Artif. Organs 33:604–610, 2009.CrossRefGoogle Scholar
  31. 31.
    Williams, A. R. Shear-induced fragmentation of human erythrocytes. Biorheology 10:303–311, 1973.Google Scholar
  32. 32.
    Wu, J., J. F. Antaki, W. R. Wagner, T. A. Snyder, B. E. Paden, and H. S. Borovetz. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 51:636–643, 2005.CrossRefGoogle Scholar
  33. 33.
    Wu, J., B. E. Paden, H. S. Borovetz, and J. F. Antaki. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artif. Organs 34:402–411, 2010.CrossRefGoogle Scholar
  34. 34.
    Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device Thrombogenicity Emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43:2400–2409, 2010.CrossRefGoogle Scholar
  35. 35.
    Xu, Z., N. Chen, M. M. Kamocka, E. D. Rosen, and M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface 5:705–722, 2008.CrossRefGoogle Scholar
  36. 36.
    Yano, T., K. Sekine, A. Mitoh, Y. Mitamura, E. Okamoto, D. W. Kim, I. Nishimura, S. Murabayashi, and R. Yozu. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif. Organs 27:920–925, 2003.CrossRefGoogle Scholar
  37. 37.
    Yeleswarapu, K. K., J. F. Antaki, M. V. Kameneva, and K. R. Rajagopal. A mathematical model for shear-induced hemolysis. Artif. Organs 19:576–582, 1995.CrossRefGoogle Scholar
  38. 38.
  39. 39.

Copyright information

© Biomedical Engineering Society (Outside the U.S.) 2012

Authors and Affiliations

  • Sandy F. C. Stewart
    • 1
  • Eric G. Paterson
    • 2
  • Greg W. Burgreen
    • 3
  • Prasanna Hariharan
    • 1
  • Matthew Giarra
    • 4
  • Varun Reddy
    • 2
  • Steven W. Day
    • 4
  • Keefe B. Manning
    • 2
  • Steven Deutsch
    • 2
  • Michael R. Berman
    • 1
  • Matthew R. Myers
    • 1
  • Richard A. Malinauskas
    • 1
  1. 1.Office of Science and Engineering LaboratoriesFood and Drug AdministrationSilver SpringUSA
  2. 2.Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Mississippi State UniversityStarkvilleUSA
  4. 4.Rochester Institute of TechnologyRochesterUSA

Personalised recommendations