Skip to main content
Log in

Enhanced Autologous Re-endothelialization of Decellularized and Extracellular Matrix Conditioned Allografts Implanted Into the Right Ventricular Outflow Tracts of Juvenile Sheep

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Decellularized allografts are promising options for pediatric valve replacement due to reduced immunogenicity and the potential for in vivo autologous recellularization, extracellular matrix (ECM) remodeling and re-endothelialization, which may be enhanced with post-decellularization processing steps. This study investigated the performance and morphology of decellularized and ECM conditioned pulmonary valves implanted in the right ventricular outflow tracts (RVOT) of juvenile sheep. RVOT reconstructions in juvenile sheep using cryopreserved pulmonary allografts (Cryo; n = 2), porcine aortic root bioprostheses (Biopros; n = 2) or decellularized/ECM conditioned pulmonary allografts (Conditioned; n = 4) were performed. Valve performance and morphology were evaluated at 20 weeks after implant. Uniaxial tensile testing was performed on a subset of unimplanted valves from each group. At explant, Biopros had significantly higher peak/mean gradients vs. Conditioned and Cryo, which were similar. No cusp calcification occurred in any valve; arterial wall calcification was present only in Cryo (mild/moderate) and Biopros (severe). No autologous recellularization or inflammation occurred in Biopros; cellularity was decreased in Cryo. Autologous recellularization was present in Conditioned arterial walls and variably extending into the cusps, with consistent cusp re-endothelialization. Conditioned valves had reduced cusp extensibility, increased stiffness and similar tensile strength vs. Cryo. Although Conditioned valves were slightly stiffer and less extensible than Cryo valves, their hemodynamic performance was comparable, indicating they behave as functional heart valves immediately following implant. Because both autologous recellularization and re-endothelialization were seen, ECM conditioning shows promise for encouraging renewal of the cellularity of decellularized allograft valves without the need for pre-implant endothelial cell seeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Almond, A. Hyaluronin. Cell. Mol. Life Sci. 64:1591–1596, 2007.

    Article  Google Scholar 

  2. Bader, A., T. Schilling, O. E. Teebken, G. Brandes, T. Herden, G. Steinhoff, and A. Haverich. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 14(3):279–284, 1998.

    Article  Google Scholar 

  3. Baraki, H., I. Tudorache, M. Braun, K. Hoffler, A. Gorler, A. Lichtenberg, C. Bara, A. Calistru, A. Brandeis, M. Hewicker-Trautwein, A. Hilfiker, A. Haverich, and S. Cebotari. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep mode. Biomaterials 30:6240–6246, 2009.

    Article  Google Scholar 

  4. Bechtel, J. F. M., M. Muller-Steinhardt, C. Schmidtke, A. Brunswik, U. Stierle, and H. H. Sievers. Evaluation of the decellularized pulmonary homograft (SynerGraft). J. Heart Valve Dis. 12:734–740, 2003.

    Google Scholar 

  5. Bertipaglia, B., F. Ortolani, L. Petrelli, G. Gerosa, M. Spina, P. Pauletto, D. Casarotto, M. Marchini, and S. Sartore. Cell characterization of porcine aortic valve and decellularized leaflets repopulated with aortic valve interstitial cells: the VESALIO Project (Vitalitate Exornatum Succedaneum Aorticum Labore Ingenioso Obtenibitur). Ann. Thorac. Surg. 75:1274–1282, 2003.

    Article  Google Scholar 

  6. Dohmen, P. M., F. da Costa, S. V. Lopes, S. Yoshi, F. P. da Souza, R. Vilani, M. B. da Costa, and W. Konertz. Results of a decellularized porcine heart valve implanted into the juvenile sheep model. Heart Surg. Forum 8(2):E100–E104, 2005.

    Article  Google Scholar 

  7. Dohmen, P. M., F. da Costa, S. Yoshi, S. V. Lopes, F. P. da Souza, R. Vilani, A. F. Wouk, M. da Costa, and W. Konertz. Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in vitro seeding? J Heart Valve Dis. 15:823–829, 2006.

    Google Scholar 

  8. Donati, A., A. Magnani, C. Bonechi, R. Barbucci, and C. Rossi. Solution structure of hyaluronic acid oligomers by experimental and theoretical NMR and molecular dynamics simulation. Biopolymers 59:434–445, 2001.

    Article  Google Scholar 

  9. Elkins, R. C., P. E. Dawson, S. Goldstein, S. P. Walsh, and K. S. Black. Decellularized human valve allografts. Ann. Thorac. Surg. 71:S428–S432, 2001.

    Article  Google Scholar 

  10. Elkins, R. C., S. Goldstein, C. W. Hewett, S. P. Walsh, P. E. Dawson, J. D. Ollerenshaw, K. S. Black, D. R. Clarke, and M. O’Brien. Recellularization of heart valve grafts by a process of adaptive remodeling. Sem. Thorac. Cardiovasc. Surg. 13:87–92, 2001.

    Google Scholar 

  11. Erdbrugger, W., W. Konertz, P. M. Dohmen, S. Posner, H. Ellerbrok, O. Brodde, H. Robenek, D. Modersohn, A. Pruss, S. Holinski, M. Stein-Konertz, and G. Pauli. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng. 12:2059–2068, 2006.

    Article  Google Scholar 

  12. Fischlein, T., G. Lehner, W. Lante, M. Fittkau, J. G. Murphy, C. H. Weinhold, and B. Reichart. Endothelialization of cardiac valve bioprostheses. Int. J. Artif. Organs. 17(6):345–352, 1994.

    Google Scholar 

  13. Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. 2006. Decellularization of tissues and organs. Biomaterials 27:3675–3683, 2006.

    Google Scholar 

  14. Gui, L., S. A. Chan, C. K. Breuer, and L. E. Niklason. Novel utilization of serum in tissue decellularization. Tissue Eng. 16(2):173–184, 2010.

    Article  Google Scholar 

  15. Gulbins, H., A. Goldemund, A. Uhlig, A. Pritisanac, B. Meiser, and B. Reichart. Implantation of an autologously endothelialized homograft. J. Thorasc. Cardiovasc. Surg. 126(3):890–891, 2003.

    Google Scholar 

  16. Hawkins, J. A., J. P. Breinholt, L. M. Lambert, et al. Class I and class II anti-HLA antibodies after implantation of cryopreserved allograft material in pediatric patients. J. Thorasc. Cardiovasc. Surg. 119(2):324–330, 2000.

    Article  Google Scholar 

  17. Haycock, G. B., G. J. Schwartz, and D. H. Wisotsky. Geometric method for measuring body surface area: a height-weight formula validated in infants, children and adults. J. Pediatr. 93:62–66, 1978.

    Article  Google Scholar 

  18. Hilbert, S. L., R. Yanagida, J. Souza, L. Wolfinbarger, A. L. Jones, P. Kreuger, G. Stearns, A. A. Bert, and R. A. Hopkins. Prototype anionic detergent technique used to decellularize allograft valve conduits evaluated in the right ventricular outflow tract in sheep. J. Heart Valve Dis. 13:831–840, 2004.

    Google Scholar 

  19. Hoerstrup, S. P., A. Kadner, S. Melnitchouk, A. Trojan, K. Eid, J. Tracy, R. Sodian, J. F. Visjager, S. A. Kolb, J. Grunenfelder, G. Zund, and M. I. Turina. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106(12 Suppl 1):143–150, 2002.

    Google Scholar 

  20. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102(19 Suppl 3):44–49, 2000.

    Google Scholar 

  21. Honge, J. L., J. Funder, E. Hansen, P. M. Dohmen, W. Konertz, and J. M. Hasenkam. Recellularization of aortic valves in pigs. Eur. J. Cardiothorac. Surg. 39:829–834, 2011.

    Article  Google Scholar 

  22. Hopkins, R. A., A. L. Jones, L. Wolfinbarger, M. A. Moore, A. A. Bert, and G. K. Lofland. Decellularization reduces calcification while improving both durability and 1-year functional results of pulmonary homograft valves in juvenile sheep. J. Thorasc. Cardiovasc. Surg. 137:907–913, 2009.

    Article  Google Scholar 

  23. Knight, R. L., C. Booth, H. E. Wilcox, J. Fisher, and E. Ingham. Tissue engineering of cardiac valves: re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. J. Heart Valve Dis. 14:806–813, 2005.

    Google Scholar 

  24. Knight, R. L., H. E. Wilcox, S. A. Korossis, J. Fisher, and E. Ingham. The use of acellular matrices for the tissue engineering of cardiac valves. Proc. IMechE Part H: J. Eng. Med. 222:129–143, 2008.

    Article  Google Scholar 

  25. Korossis, S. A., C. Booth, H. E. Wilcox, K. G. Watterson, J. N. Kearney, J. Fisher, and E. Ingham. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic valves. J. Heart Valve Dis. 11:463–471, 2002.

    Google Scholar 

  26. Liao, J., E. M. Joyce, and M. S. Sacks. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29:1065–1074, 2008.

    Article  Google Scholar 

  27. Meyer, S. R., B. Chiu, T. A. Churchill, L. Zhu, J. R. T. Lakey, and D. B. Ross. Comparison of aortic valve allograft decellularization techniques in the rat. J. Biomed. Mater. Res. 79A:254–262, 2006.

    Article  Google Scholar 

  28. Meyer, S. R., J. Nagendran, L. S. Desai, G. R. Rayat, T. A. Churchill, C. C. Anderson, R. V. Rajotte, J. R. T. Lakey, and D. B. Ross. Decellularization reduces the immune response to aortic valve allografts in the rat. J. Thorasc. Cardiovasc. Surg. 130:469–476, 2005.

    Article  Google Scholar 

  29. Nimni, M. E., D. Cheung, B. Strates, M. Kodama, and K. Sheikh. Chemically modified collagen: a natural biomaterial for tissue replacement. J. Biomed. Mater. Res. 21(6):741–771, 1987.

    Article  Google Scholar 

  30. O’Brien, M. F., S. Goldstein, S. Walsh, K. S. Black, R. Elkins, and D. Clarke. The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Sem. Thorac. Cardiovasc. Surg. 11(4):194–200, 1999.

    Google Scholar 

  31. Quinn, R. W., S. L. Hilbert, A. A. Bert, B. W. Drake, J. A. Bustamante, J. E. Fenton, S. J. Moriarty, S. L. Neighbors, G. K. Lofland, and R. A. Hopkins. Performance and morphology of decellularized pulmonary valves implanted in juvenile sheep. Ann. Thorac. Surg. 92:131–137, 2011.

    Article  Google Scholar 

  32. Rajani, B., R. B. Mee, and N. B. Ratliff. Evidence for rejection of homograft cardiac valves in infants. J. Thorasc. Cardiovasc. Surg. 115:111–117, 1998.

    Article  Google Scholar 

  33. Rieder, E., M. T. Kasimir, G. Silberhumer, G. Seebacher, E. Wolner, P. Simon, and G. Weigel. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorasc. Cardiovasc. Surg. 127:399–405, 2004.

    Article  Google Scholar 

  34. Sales, V. L., B. A. Mettler, G. C. Engelmayr, E. Aikawa, J. Bischoff, D. P. Martin, A. Exarhopoulos, M. A. Moses, F. Schoen, M. S. Sacks, and J. E. Mayer. Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng. A. 16(1):257–267, 2010.

    Article  Google Scholar 

  35. Schenke-Layland, K., O. Vasilevski, F. Opitz, K. Konig, I. Riemann, K. J. Halbhuber, T. Whalers, and U. A. Stock. Impact of decellularization of xenogenic tissue on extracellular matrix integrity for tissue engineering of heart valves. J. Struct. Biol. 143:201–208, 2003.

    Article  Google Scholar 

  36. Seebacher, G., C. Grasl, M. Stoiber, E. Rieder, M. Kasimir, D. Dunkler, P. Simon, G. Weigel, and H. Schima. Biomechanical properties of decellularized porcine pulmonary valve conduits. Artif. Organs. 32:28–35, 2008.

    Google Scholar 

  37. Shinoka, T. Tissue engineered heart valves: autologous cell seeding on biodegradable polymer scaffold. Artif. Organs. 26(5):402–406, 2002.

    Article  Google Scholar 

  38. Spina, M., F. Ortolani, A. El Messelemani, A. Gandaglia, J. Bujan, N. Garcia-Honduvilla, I. Vesely, G. Gerosa, D. Casarotto, L. Petrelli, and M. Marchini. Isolation of intact aortic valve scaffolds for heart-valve bioprostheses: extracellular matrix structure, prevention from calcification and cell repopulation features. J. Biomed. Mater. Res. 67A:1338–1350, 2003.

    Article  Google Scholar 

  39. Steinhoff, G., U. Stock, N. Karim, H. Mertsching, A. Timke, R. R. Meliss, K. Pethig, A. Haverich, and A. Bader. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102(19 Suppl 3):50–55, 2000.

    Google Scholar 

  40. Tavakkol, Z., S. Gelehrter, C. S. Goldberg, E. L. Bove, E. J. Devaney, and R. G. Ohye. Superior durability of SynerGraft pulmonary allografts compared with standard cryopreserved allografts. Ann. Thorac. Surg. 80:1610–1614, 2005.

    Article  Google Scholar 

  41. Tudorache, I., S. Cebotari, G. Sturtz, L. Kirsch, C. Hurschler, A. Hilfiker, A. Haverich, and A. Lichtenberg. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis. 16:567–574, 2007.

    Google Scholar 

  42. Vincentelli, A., F. Wautot, F. Juthier, O. Fouquet, D. Corseaux, S. Marechaux, T. Le Tourneau, O. Fabre, S. Susen, E. Van Belle, F. Mouquet, C. Decoene, A. Prat, and B. Jude. In vivo autologous recellularization of a tissue-engineered heart valve: are bone marrow mesenchymal stem cells the best candidates? J. Thorasc. Cardiovasc. Surg. 134(2):424–432, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the exemplary teamwork and professionalism of the Experimental Cardiac Surgery Team of The Ward Family Center for Congenital Heart Disease: Stacy L. Neighbors, RNFA; Julie Bustamante, RN, CNOR; Jason E. Fenton, RN, MS, CCP; Kellie Merrigan, MPS, CCP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael W. Quinn.

Additional information

Associate Editor Adrian Chester oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, R.W., Hilbert, S.L., Converse, G.L. et al. Enhanced Autologous Re-endothelialization of Decellularized and Extracellular Matrix Conditioned Allografts Implanted Into the Right Ventricular Outflow Tracts of Juvenile Sheep. Cardiovasc Eng Tech 3, 217–227 (2012). https://doi.org/10.1007/s13239-011-0078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0078-y

Keywords

Navigation