Skip to main content
Log in

Sustained Delivery of Nitric Oxide from Poly(ethylene glycol) Hydrogels Enhances Endothelialization in a Rat Carotid Balloon Injury Model

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The continuing high incidence of vascular disease is leading to a greater need for interventional therapies and vascular prostheses. Nitric oxide (NO), which has been heavily investigated in recent years as an important biological mediator, is presented in this work as a sustained localized therapeutic for vascular disorders, specifically in the prevention of restenosis. NO-releasing PEG hydrogels were applied to the outer surfaces of carotid arteries following balloon denudation in a rat animal model. NO was allowed to diffuse into the vessel, and intimal thickening, as assessed after 2 and 28 days, was almost fully eliminated, showing an approximate 90% decrease. Meanwhile, endothelial cell migration and proliferation into the damaged vessel sections were observed. These results signify that these materials are suitable to prevent intimal hyperplasia and induce endothelialization in vivo, making these NO-releasing hydrogels an ideal candidate for incorporation into blood-contacting devices for the prevention of restenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agata, J., J. J. Zhang, J. Chao, and L. Chao. Adrenomedullin gene delivery inhibits neointima formation in rat artery after balloon angioplasty. Regul. Pept. 112:115–120, 2003.

    Article  Google Scholar 

  2. Bailey, S. R. Local drug delivery: current applications. Prog. Cardiovasc. Dis. 40:183–204, 1997.

    Article  Google Scholar 

  3. Bauters, C., and J. M. Isner. The biology of restenosis. Prog. Cardiovasc. Dis. 40(2):107–116, 1997.

    Article  Google Scholar 

  4. Bohl, K. S., and J. L. West. Nitric oxide-generating polymers reduce platelet adhesion and smooth muscle cell proliferation. Biomaterials 21:2273–2278, 2000.

    Article  Google Scholar 

  5. Bult, H. Restenosis: a challenge for pharmacology. Trends Pharmacol. Sci. 21(7):274–279, 2000.

    Article  Google Scholar 

  6. Dangas, G. D., B. E. Claessen, A. Caixeta, E. A. Sanidas, G. S. Mintz, and R. Mehran. In-stent restenosis in the drug-eluting stent era. J. Am. Coll. Cardiol. 56:1897–1907, 2010.

    Article  Google Scholar 

  7. Elkins, C. J., J. M. Waugh, P. G. Amabile, H. Minamiguchi, M. Uy, K. Sugimoto, et al. Development of a platform to evaluate and limit in-stent restenosis. Tissue Eng. 8:395–407, 2002.

    Article  Google Scholar 

  8. Ettenson, D. S., and E. R. Edelman. Local drug delivery: an emerging approach in the treatment of restenosis. Vasc. Med. 5:97–102, 2000.

    Google Scholar 

  9. Fattori, R., and T. Piva. Drug-eluting stents in vascular intervention. Lancet 361:247–249, 2003.

    Article  Google Scholar 

  10. Folts, J. D., and J. Loscalzo. Coating arterial and blood-contacting surfaces with NO-donating materials. In: Nitric Oxide and the Cardiovascular System, edited by J. Loscalzo, and J. A. Vita. Totowa, NJ: Humana Press, 2000, pp. 503–514.

    Chapter  Google Scholar 

  11. Herrmann, R., G. Schmidmaier, B. Markl, A. Resch, I. Hahnel, A. Stemberger, et al. Antithrombogenic coating of stents using a biodegradable drug delivery technology. Thromb. Haemost. 82:51–57, 1999.

    Google Scholar 

  12. Hrabie, J. A., J. R. Klose, D. A. Wink, and L. K. Keefer. New nitric oxide-releasing zwitterions derived from polyamines. J. Org. Chem. 58:1472–1476, 1993.

    Article  Google Scholar 

  13. Jun, H. W., L. J. Taite, and J. L. West. Nitric oxide-producing polyurethanes. Biomacromolecules 6:838–844, 2005.

    Article  Google Scholar 

  14. Kapadia, M. R., L. W. Chow, N. D. Tsihlis, S. S. Ahanchi, J. W. Eng, J. Murar, et al. Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J. Vasc. Surg. 47:173–182, 2008.

    Article  Google Scholar 

  15. Kavanagh, C. A., Y. A. Rochev, W. M. Gallagher, K. A. Dawson, and A. K. Keenan. Local drug delivery in restenosis injury: thermoresponsive co-polymers as potential drug delivery systems. Pharmacol. Ther. 102:1–15, 2004.

    Article  Google Scholar 

  16. Keefer, L. K. Progress toward clinical application of the nitric oxide-releasing diazeniumdiolates. Annu. Rev. Pharmacol. Toxicol. 43:585–607, 2003.

    Article  Google Scholar 

  17. Kelm, M. Nitric oxide metabolism and breakdown. Biochim. Biophys. Acta 1411:273–289, 1999.

    Article  Google Scholar 

  18. Lee, M. S., E. M. David, R. R. Makkar, and J. R. Wilentz. Molecular and cellular basis of restenosis after percutaneous coronary intervention: the intertwining roles of platelets, leukocytes, and the coagulation-fibrinolysis system. J. Pathol. 203:861–870, 2004.

    Article  Google Scholar 

  19. Lipke, E. A., and J. L. West. Localized delivery of nitric oxide from hydrogels inhibits neointima formation in a rat carotid balloon injury model. Acta Biomater. 1(6):597–606, 2005.

    Article  Google Scholar 

  20. Majesky, M. W., C. M. Giachelli, M. A. Reidy, and S. M. Schwartz. Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury. Circ. Res. 71:759–768, 1992.

    Google Scholar 

  21. Masters, K. S., E. A. Lipke, E. E. Rice, M. S. Liel, H. A. Myler, C. Zygourakis, et al. Nitric oxide-generating hydrogels inhibit neointima formation. J. Biomater. Sci. Polym. Ed. 16:659–672, 2005.

    Article  Google Scholar 

  22. Moore, S. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 243:6281–6283, 1968.

    Google Scholar 

  23. Pearce, C. G., S. F. Najjar, M. R. Kapadia, J. Murar, J. Eng, B. Lyle, et al. Beneficial effect of a short-acting NO donor for the prevention of neointimal hyperplasia. Free Radic. Biol. Med. 44:73–81, 2008.

    Article  Google Scholar 

  24. Raman, V. K., and E. R. Edelman. Coated stents: local pharmacology. Semin. Interv. Cardiol. 3:133–137, 1998.

    Google Scholar 

  25. Saavedra, J. E., D. L. Mooradian, K. A. Mowery, M. H. Schoenfisch, M. L. Citro, K. M. Davies, et al. Conversion of a polysaccharide to nitric oxide-releasing form. Dual-mechanism anticoagulant activity of diazeniumdiolated heparin. Bioorg. Med. Chem. Lett. 10(8):751–753, 2000.

    Article  Google Scholar 

  26. Sharma, S., C. Christopoulos, N. Kukreja, and D. A. Gorog. Local drug delivery for percutaneous coronary intervention. Pharmacol. Ther. 2010

  27. Taite, L. J., P. Yang, H. W. Jun, and J. L. West. Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mater. Res. B Appl. Biomater. 84(1):108–116, 2008.

    Google Scholar 

  28. Takamiya, Y., S. I. Miura, Y. Tsuchiya, Y. Fukuda, B. Zhang, T. Kuwano, et al. Angiographic late lumen loss at the site of overlap of multiple Cypher sirolimus-eluting stents: ALSOCE study. J. Cardiol. 2010

  29. Tanabe, K., E. Regar, C. H. Lee, A. Hoye, W. J. van der Giessen, and P. W. Serruys. Local drug delivery using coated stents: new developments and future perspectives. Curr. Pharm. Des. 10:357–367, 2004.

    Article  Google Scholar 

  30. Virmani, R., F. D. Kolodgie, A. Farb, and A. Lafont. Drug eluting stents: are human and animal studies comparable? Heart 89:133–138, 2003.

    Article  Google Scholar 

  31. Walter, D. H., M. Cejna, L. Diaz-Sandoval, S. Willis, L. Kirkwood, P. W. Stratford, et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation 110:36–45, 2004.

    Article  Google Scholar 

  32. West, J. L., and J. A. Hubbell. Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the roles of medial and luminal factors in arterial healing. Proc. Natl Acad. Sci. U.S.A. 93:13188–13193, 1996.

    Article  Google Scholar 

Download references

Acknowledgments

Research funding was provided by an NSF CAREER Award [BES-9875607], the Rice University Alliance for Graduate Education and the Professoriate (AGEP) [NSF Cooperative Agreement No. [HRD-9817555], and the Rice University Integrative Graduate Education and Research Traineeship [NSF IGERT Grant 0114264].

Conflicts of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. West.

Additional information

Associate Editor Adrian Chester oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taite, L.J., West, J.L. Sustained Delivery of Nitric Oxide from Poly(ethylene glycol) Hydrogels Enhances Endothelialization in a Rat Carotid Balloon Injury Model. Cardiovasc Eng Tech 2, 113–123 (2011). https://doi.org/10.1007/s13239-011-0040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0040-z

Keywords

Navigation