Biomechanical Characterization of a Micro/Macroporous Polycaprolactone Tissue Integrating Vascular Graft

Abstract

The objective of the present study was to characterize the short-term biomechanical properties of cast micro/macroporous poly(caprolactone) (PCL) tubes intended for application as tissue integrating blood vessel substitutes. Micro/macroporous PCL vascular grafts (5.5 mm internal diameter, 7.5 mm external diameter) with defined macropore structures were produced by rapidly cooling PCL solutions containing dispersed gelatin particles in dry ice, followed by solvent and gelatin extraction. A Bose-Enduratec BioDynamic chamber configured for cardiovascular applications was used to measure the diametrical stability (dilation) of tubular samples under hydrodynamic flow conditions at 37 °C. Microporous PCL tubes withstood the hydrodynamic stresses induced by short, 2-min duration flow rates up to 1000 mL/min, which resulted in estimated internal pressures in excess of arterial pressure (80–130 mmHg). Micro/macroporous PCL tubes having a maximum macroporosity of 23% accommodated the hydrodynamic stresses generated by short duration, flow rates up to 1000 mL/min, which resulted in estimated internal pressures similar to venous pressure (30 mmHg).The dilation of microporous PCL tubes under short, (5 min) pulsatile flow conditions (1 Hz) increased from 10 to 100 μm with increasing mean flow rate from 50 to 500 mL/min. Both microporous and macroporous tubes exhibited a burst strength higher than 900 mmHg under hydrostatic fluid pressure, which is in excess of arterial pressure (80–130 mmHg) by a factor of approximately 7. Quantitative analysis of the macropore structure was performed using micro-computed tomography for correlation with mechanical properties and cell growth rates. Mouse fibroblasts efficiently colonized the external surface of macroporous PCL materials over 8 days in cell culture and cell numbers were higher by a factor of two compared with microporous PCL. These findings demonstrate that micro/macroporous PCL tubes designed for vascular tissue engineering can accommodate the hydrodynamic stresses generated by short duration, simulated blood flow conditions and exhibit good potential for integration with host tissue.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1.

    Bittinger, F., S. Muhlbayer, V. Salih, M. Grau, H. A. Richter, C. L. Klein, et al. Experimental studies on the suitability of human mesothelial cells for seeding vascular prostheses: shear stress resistance in vitro. J. Mater. Sci. Mater. Med. 7:543–550, 1996.

    Article  Google Scholar 

  2. 2.

    Chang, H. I., Y. Perrie, and A. G. Coombes. Delivery of the antibiotic gentamicin sulphate from precipitation cast matrices of polycaprolactone. J. Control Release 110(2):414–421, 2006.

    Article  Google Scholar 

  3. 3.

    Cheng, C. P., D. Parker, and C. A. Taylor. Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Ann. Biomed. Eng. 30:1020–1032, 2002.

    Article  Google Scholar 

  4. 4.

    Coombes, A. G., S. C. Rizzi, M. Williamson, J. E. Barralet, S. Downes, and W. A. Wallace. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25(2):315–325, 2004.

    Article  Google Scholar 

  5. 5.

    Darling, A. L., and W. Sun. 3D microtomographic characterization of precision extruded poly-epsilon-caprolactone scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 70B(2):311–317, 2004.

    Article  Google Scholar 

  6. 6.

    Day, R. M., A. R. Boccaccini, V. Maquet, S. Shurey, A. Forbes, S. M. Gabe, et al. In vivo characterization of a novel bioresorbable poly(lactide co-glycolide) tubular foam scaffold for tissue engineering applications. J. Mater. Sci. Mater. Med. 15:729–734, 2004.

    Article  Google Scholar 

  7. 7.

    Gordon, J. E. Structures. Cambridge: Da Capo Press, 2003.

    Google Scholar 

  8. 8.

    Greisler, H. P., D. U. Kim, J. B. Proice, and A. B. Voorhee. Arterial regenerative activity after prosthetic implantation. Arch. Surg. 120:315–323, 1985.

    Google Scholar 

  9. 9.

    Greissler, H. P., J. Ellinger, T. H. Schwarcz, J. Golan, R. M. Raymond, and D. U. Kim. Arterial regeneration over a polydioxanone prosthesis in the rabbit. Arch. Surg. 122:715–721, 1987.

    Google Scholar 

  10. 10.

    Guidoin, R., D. Marceau, J. Couture, T. J. Rao, Y. Merhi, P.-E. Roy, and D. De la Feye. Collagen coatings as biological sealants for textile arterial prostheses. Biomaterials 10:156–165, 1989.

    Article  Google Scholar 

  11. 11.

    Ku, B. K., and R. C. Allen. Vascular grafts. In: The Biomedical Engineering Handbook, edited by J. D. Bronzino. Boca Raton: CRC Press, 2006, pp. 128-121–128-128.

    Google Scholar 

  12. 12.

    L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. [see comment]. FASEB J. 12(1):47–56, 1998.

    Google Scholar 

  13. 13.

    Lee, S. J., J. Liu, S. H. Oh, S. Soker, A. Atala, and J. J. Yoo. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29:2891–2898, 2008.

    Article  Google Scholar 

  14. 14.

    Matsumura, G., N. Hibino, Y. Ikada, H. Kurosawa, and T. Shin’oka. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24(13):2303–2308, 2003.

    Article  Google Scholar 

  15. 15.

    Mattern, K. J., C. Nakornchai, and W. M. Deen. Darcy permeability of agarose glycosaminoglycan gels analysed using fiber mixture and donnan modes. Biophys. J. 95:648–656, 2008.

    Article  Google Scholar 

  16. 16.

    Moore, G. F., and S. M. Saunders. Advances in biodegradable polymers. Rapra Rev. Rep. 9:19–21, 1997.

    Google Scholar 

  17. 17.

    Mujais, S. K. Non thrombogenic surfaces. In: Blood-Material Interaction. A Basic Guide from Polymer Science to Clinical Application, edited by D. Falkenhagen, H. Klinkmann, E. Piskin, K. Opatmy. Glasgow: INFA, 1998, 60–64.

    Google Scholar 

  18. 18.

    Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, et al. Functional arteries grown in vitro. Science 284(5413):489–493, 1999.

    Article  Google Scholar 

  19. 19.

    Papadaki, M., and L. V. McIntyre. Quantitative measurement of shear stress effects on endothelial cells. In: Tissue Engineering Methods and Protocols, edited by J. R. Morgan, and M. L. Yarmsh. Totowa, NJ: Humana Press Inc., 1999, pp. 577–592.

    Google Scholar 

  20. 20.

    Phaneuf, M. D., W. C. Quist, F. W. LoGerfo, and M. J. Bide. Surface modification of Dacron vascular grafts: incorporation of antithrombin and mitogenic properties. In: Polymeric Biomaterials, edited by S. Dumitriu. New York: Marcel Dekker, 2001, pp. 647–668.

    Google Scholar 

  21. 21.

    Schneck, D. J. An outline of cardiovascular structure and function. In: The Biomedical Engineering Handbook, edited by J. D. Bronzino. Boca Raton: CRC Press, 2006, pp. 1.1–1.12.

    Google Scholar 

  22. 22.

    Shinoka, T., D. Shum-Tim, P. X. Ma, R. E. Tanel, N. Isogai, R. Langer, et al. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 115:536–546, 1998.

    Article  Google Scholar 

  23. 23.

    Tada, S., and J. M. Tarbell. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Ann. Biomed. Eng. 29:456–466, 2001.

    Article  Google Scholar 

  24. 24.

    Van Damme, H., M. Deprez, E. Creemers, and R. Limet. Intrinsic structural failure of polyester Dacron vascular grafts. A general review. Acta Chir. Belg. 105:249–255, 2005.

    Google Scholar 

  25. 25.

    Vohra, R. K., G. J. Thomson, H. M. Carr, H. Sharma, M. Welch, and M. G. Walker. In vitro adherence and kinetic studies of adult human endothelial cell-seeded polytetrafluoroethylene and gelatin-impregnated Dacron grafts. Eur. J. Vasc. Surg. 5:93–103, 1991.

    Article  Google Scholar 

  26. 26.

    Walsh, P. W., S. Chin-Quee, and J. E. Moore. Flow changes in the aorta associated with the deployment of an AAA stent graft. Med. Eng. Phys. 25:299–307, 2003.

    Article  Google Scholar 

  27. 27.

    Wang, Y., H. I. Chang, D. Wertheim, A. C. Jones, C. Jackson, and A. Coombes. Characterisation of the macroporosity of polycaprolactone-based biocomposites and release kinetics for drug delivery. Biomaterials 28:4619–4627, 2007.

    Article  Google Scholar 

  28. 28.

    Wang, Y., P. Tomlins, A. Coombes, and M. Rides. On the determination of Darcy permeability coefficients for a microporous tissue scaffold. Tissue Eng. C Methods 2:281–289, 2010.

    Article  Google Scholar 

  29. 29.

    Williams, J. M., A. Adewunmi, R. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feiberg, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.

    Article  Google Scholar 

  30. 30.

    Williamson, M. R., R. Black, and C. Kielty. PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials 27(19):3608–3616, 2006.

    Google Scholar 

  31. 31.

    Williamson, M. R., K. J. Woollard, H. R. Griffiths, and A. G. Coombes. Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells. Tissue Eng. 12(1):45–51, 2006.

    Article  Google Scholar 

  32. 32.

    Xue, L., and H. P. Greisler. In principles of tissue engineering. In: Blood Vessels, edited by R. P. Lanza, and R. J. V. Langer. San Diego: Academic Press, 2000, pp. 427–446.

    Google Scholar 

  33. 33.

    Yamamoto, M., Y. Tabata, N. Kawasaki, and Y. Ikada. Promotion of fibrovascular tissue ingrowth into porous sponges by basic fibroblast growth factor. J. Mater. Sci. Mater. Med. 11:213–218, 2000.

    Article  Google Scholar 

  34. 34.

    Yang, J., G. Shi, J. Bei, S. Wang, Y. Cao, Q. Shang, et al. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic co glycolic acid) (70/30) cell scaffolds for human skin fibroblasts cell culture. J. Biomed. Mater. Res. 62:438–446, 2002.

    Article  Google Scholar 

  35. 35.

    Yao, H., and W. Y. Gu. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach. Biomech. Model. Mechanobiol. 6:63–72, 2007.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Allan G. A. Coombes.

Additional information

Associate Editor Jay Humphrey oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Lam, J., Zhang, B. et al. Biomechanical Characterization of a Micro/Macroporous Polycaprolactone Tissue Integrating Vascular Graft. Cardiovasc Eng Tech 1, 202–215 (2010). https://doi.org/10.1007/s13239-010-0019-1

Download citation

Keywords

  • Polycaprolactone
  • Porous-walled tubes
  • Scaffolds
  • Vascular grafts
  • Biomechanical properties
  • X-ray microcomputed tomography μCT
  • Fibroblast