Protein & Cell

, Volume 4, Issue 3, pp 168–175 | Cite as

Expression regulation and function of NLRC5

Review

Abstract

The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specific and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.

Keywords

NLR NLRC5 MHC Class I 

References

  1. Allen, I.C., Wilson, J.E., Schneider, M., Lich, J.D., Roberts, R.A., Arthur, J.C., Woodford, R.M., Davis, B.K., Uronis, J.M., Herfarth, H.H., et al. (2012). NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36, 742–754.CrossRefGoogle Scholar
  2. Anand, P.K., Malireddi, R.K., Lukens, J.R., Vogel, P., Bertin, J., Lamkanfi, M., and Kanneganti, T.D. (2012). NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488, 389–393.CrossRefGoogle Scholar
  3. Benko, S., Magalhaes, J.G., Philpott, D.J., and Girardin, S.E. (2010). NLRC5 limits the activation of inflammatory pathways. J Immunol 185, 1681–1691.CrossRefGoogle Scholar
  4. Biswas, A., Meissner, T.B., Kawai, T., and Kobayashi, K.S. (2012). Cutting edge: impaired MHC class I expression in mice deficient for nlrc5/class I transactivator. J Immunol 189, 516–520.CrossRefGoogle Scholar
  5. Camacho-Carvajal, M.M., Klingler, S., Schnappauf, F., Hake, S.B., and Steimle, V. (2004). Importance of class II transactivator leucinerich repeats for dominant-negative function and nucleo-cytoplasmic transport. Int Immunol 16, 65–75.CrossRefGoogle Scholar
  6. Chang, C.H., Guerder, S., Hong, S.C., van Ewijk, W., and Flavell, R.A. (1996). Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity 4, 167–178.CrossRefGoogle Scholar
  7. Cui, J., Li, Y., Zhu, L., Liu, D., Songyang, Z., Wang, H.Y., and Wang, R.F. (2012). NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol 13, 387–395.CrossRefGoogle Scholar
  8. Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen, Z.J., et al. (2010). NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141, 483–496.CrossRefGoogle Scholar
  9. Davis, B.K., Roberts, R.A., Huang, M.T., Willingham, S.B., Conti, B.J., Brickey, W.J., Barker, B.R., Kwan, M., Taxman, D.J., Accavitti-Loper, M.A., et al. (2011). Cutting Edge: NLRC5-Dependent Activation of the Inflammasome. J Immunol 186, 1333–1337.CrossRefGoogle Scholar
  10. Eisenbarth, S.C., Williams, A., Colegio, O.R., Meng, H., Strowig, T., Rongvaux, A., Henao-Mejia, J., Thaiss, C.A., Joly, S., Gonzalez, D.G., et al. (2012). NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484, 510–513.CrossRefGoogle Scholar
  11. Elinav, E., Strowig, T., Kau, A.L., Henao-Mejia, J., Thaiss, C.A., Booth, C.J., Peaper, D.R., Bertin, J., Eisenbarth, S.C., Gordon, J.I., et al. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757.CrossRefGoogle Scholar
  12. Gong, Y.N., and Shao, F. (2012). Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation. Protein Cell 3, 98–105.CrossRefGoogle Scholar
  13. Hake, S.B., Masternak, K., Kammerbauer, C., Janzen, C., Reith, W., and Steimle, V. (2000). CIITA leucine-rich repeats control nuclear localization, in vivo recruitment to the major histocompatibility complex (MHC) class II enhanceosome, and MHC class II gene transactivation. Mol Cell Biol 20, 7716–7725.CrossRefGoogle Scholar
  14. Jabrane-Ferrat, N., Nekrep, N., Tosi, G., Esserman, L., and Peterlin, B.M. (2003). MHC class II enhanceosome: how is the class II transactivator recruited to DNA-bound activators? Int Immunol 15, 467–475.CrossRefGoogle Scholar
  15. Jiang, H., and Chess, L. (2000). The specific regulation of immune responses by CD8+ T cells restricted by the MHC class IB molecule, QA-1. Annu Rev Immunol 18, 185–216.CrossRefGoogle Scholar
  16. Jounai, N., Kobiyama, K., Shiina, M., Ogata, K., Ishii, K.J., and Takeshita, F. (2011). NLRP4 negatively regulates autophagic processes through an association with beclin1. J Immunol 186, 1646–1655.CrossRefGoogle Scholar
  17. Khare, S., Dorfleutner, A., Bryan, N.B., Yun, C., Radian, A.D., de Almeida, L., Rojanasakul, Y., and Stehlik, C. (2012). An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36, 464–476.CrossRefGoogle Scholar
  18. Kobayashi, K.S., and van den Elsen, P.J. (2012). NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 12, 813–820.CrossRefGoogle Scholar
  19. Kuenzel, S., Till, A., Winkler, M., Hasler, R., Lipinski, S., Jung, S., Grotzinger, J., Fickenscher, H., Schreiber, S., and Rosenstiel, P. (2010). The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. J Immunol 184, 1990–2000.CrossRefGoogle Scholar
  20. Kumar, H., Pandey, S., Zou, J., Kumagai, Y., Takahashi, K., Akira, S., and Kawai, T. (2011). NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J Immunol 186, 994–1000.CrossRefGoogle Scholar
  21. Lamkanfi, M., and Kanneganti, T.D. (2012). Regulation of immune pathways by the NOD-like receptor NLRC5. Immunobiology 217, 13–16.CrossRefGoogle Scholar
  22. LeibundGut-Landmann, S., Waldburger, J.M., Krawczyk, M., Otten, L.A., Suter, T., Fontana, A., Acha-Orbea, H., and Reith, W. (2004). Mini-review: specificity and expression of CIITA, the master regulator of MHC class II genes. Eur J Immunol 34, 1513–1525.CrossRefGoogle Scholar
  23. Levinsohn, J.L., Newman, Z.L., Hellmich, K.A., Fattah, R., Getz, M.A., Liu, S., Sastalla, I., Leppla, S.H., and Moayeri, M. (2012). Anthrax lethal factor cleavage of Nlrp1 is required for activation of the in-flammasome. PLoS Pathog 8, e1002638.CrossRefGoogle Scholar
  24. Lie, B.A., and Thorsby, E. (2005). Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr Opin Immunol 17, 526–531.CrossRefGoogle Scholar
  25. Martin, B.K., Chin, K. C., Olsen, J.C., Skinner, C.A., Dey, A., Ozato, K., and Ting, J.P.Y. (1997). Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6, 591–600.CrossRefGoogle Scholar
  26. Martinon, F., Mayor, A., and Tschopp, J. (2009). The inflammasomes: guardians of the body. Annu Rev Immunol 27, 229–265.CrossRefGoogle Scholar
  27. Masternak, K., and Reith, W. (2002). Promoter-specific functions of CIITA and the MHC class II enhanceosome in transcriptional activation. Embo Journal 21, 1379–1388.CrossRefGoogle Scholar
  28. Meissner, T.B., Li, A., Biswas, A., Lee, K.H., Liu, Y.J., Bayir, E., Iliopoulos, D., van den Elsen, P.J., and Kobayashi, K.S. (2010). NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107, 13794–13799.CrossRefGoogle Scholar
  29. Meissner, T.B., Li, A., Liu, Y.J., Gagnon, E., and Kobayashi, K.S. (2012a). The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity. Biochem Biophys Res Commun 418, 786–791.CrossRefGoogle Scholar
  30. Meissner, T.B., Liu, Y.J., Lee, K.H., Li, A., Biswas, A., van Eggermond, M.C., van den Elsen, P.J., and Kobayashi, K.S. (2012b). NLRC5 cooperates with the RFX transcription factor complex to induce MHC class I gene expression. J Immunol 188, 4951–4958.CrossRefGoogle Scholar
  31. Moreno, C.S., Beresford, G.W., Louis-Plence, P., Morris, A.C., and Boss, J.M. (1999). CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity 10, 143–151.CrossRefGoogle Scholar
  32. Neerincx, A., Lautz, K., Menning, M., Kremmer, E., Zigrino, P., Hosel, M., Buning, H., Schwarzenbacher, R., and Kufer, T.A. (2010). A role for the human NLR family member NLRC5 in antiviral responses. J Biol Chem 285, 26223–26232.CrossRefGoogle Scholar
  33. Neerincx, A., Rodriguez, G.M., Steimle, V., and Kufer, T.A. (2012). NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. J Immunol 188, 4940–4950.CrossRefGoogle Scholar
  34. Pamer, E., and Cresswell, P. (1998). Mechanisms of MHC class I — Restricted antigen processing. Ann Rev Immunol 16, 323–358.CrossRefGoogle Scholar
  35. Peaper, D.R., and Cresswell, P. (2008). Regulation of MHC Class I Assembly and Peptide Binding. Annu Rev Cell Dev Bi 24, 343–368.CrossRefGoogle Scholar
  36. Robbins, G.R., Truax, A.D., Davis, B.K., Zhang, L., Brickey, W.J., and Ting, J.P. (2012). Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J Biol Chem 287, 24294–24303.CrossRefGoogle Scholar
  37. Savage, P.A., Boniface, J.J., and Davis, M.M. (1999). A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492.CrossRefGoogle Scholar
  38. Schneider, M., Zimmermann, A.G., Roberts, R.A., Zhang, L., Swanson, K.V., Wen, H., Davis, B.K., Allen, I.C., Holl, E.K., Ye, Z., et al. (2012). The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol 13, 823–831.CrossRefGoogle Scholar
  39. Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821–832.CrossRefGoogle Scholar
  40. Shepherd, J.C., Schumacher, T.N.M., Ashtonrickardt, P.G., Imaeda, S., Ploegh, H.L., Janeway, C.A., and Tonegawa, S. (1993). Tap1-Dependent Peptide Translocation in-Vitro Is Atp-Dependent and Peptide Selective. Cell 74, 577–584.CrossRefGoogle Scholar
  41. Staehli, F., Ludigs, K., Heinz, L.X., Seguin-Estevez, Q., Ferrero, I., Braun, M., Schroder, K., Rebsamen, M., Tardivel, A., Mattmann, C., et al. (2012). NLRC5 deficiency selectively impairs MHC class I-dependent lymphocyte killing by cytotoxic T cells. J Immunol 188, 3820–3828.CrossRefGoogle Scholar
  42. Strober, W., Murray, P.J., Kitani, A., and Watanabe, T. (2006). Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6, 9–20.CrossRefGoogle Scholar
  43. Tong, Y., Cui, J., Li, Q., Zou, J., Wang, H.Y., and Wang, R.F. (2012). Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res 22, 822–835.CrossRefGoogle Scholar
  44. Tschopp, J., and Schroder, K. (2010). NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10, 210–215.CrossRefGoogle Scholar
  45. Vesely, M.D., Kershaw, M.H., Schreiber, R.D., and Smyth, M.J. (2011). Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29, 235–271.CrossRefGoogle Scholar
  46. Vladimer, G.I., Weng, D., Paquette, S.W., Vanaja, S.K., Rathinam, V.A., Aune, M.H., Conlon, J.E., Burbage, J.J., Proulx, M.K., Liu, Q., et al. (2012). The NLRP12 Inflammasome Recognizes Yersinia pestis. Immunity 37, 96–107.CrossRefGoogle Scholar
  47. Williams, G.S., Malin, M., Vremec, D., Chang, C.H., Boyd, R., Benoist, C., and Mathis, D. (1998). Mice lacking the transcription factor CIITA—a second look. Int Immunol 10, 1957–1967.CrossRefGoogle Scholar
  48. Williams, K.L., Taxman, D.J., Linhoff, M.W., Reed, W., and Ting, J.P.Y. (2003). Cutting edge: Monarch-1: A pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. Journal of Immunology 170, 5354–5358.CrossRefGoogle Scholar
  49. Yao, Y., Wang, Y., Chen, F., Huang, Y., Zhu, S., Leng, Q., Wang, H., Shi, Y., and Qian, Y. (2012). NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res 22, 836–847.CrossRefGoogle Scholar
  50. Zaki, M.H., Vogel, P., Malireddi, R.K., Body-Malapel, M., Anand, P.K., Bertin, J., Green, D.R., Lamkanfi, M., and Kanneganti, T.D. (2011). The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649–660.CrossRefGoogle Scholar
  51. Zhao, Y., and Shao, F. (2012). NLRC5: a NOD-like receptor protein with many faces in immune regulation. Cell Res 22, 1099–1101.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological SciencesChinese Academy of Sciences/Shanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations