Structural basis of heparan sulfate-specific degradation by heparinase III

Abstract

Heparinase III (HepIII) is a 73-kDa polysaccharide lyase (PL) that degrades the heparan sulfate (HS) polysaccharides at sulfate-rare regions, which are important co-factors for a vast array of functional distinct proteins including the well-characterized antithrombin and the FGF/FGFR signal transduction system. It functions in cleaving metazoan heparan sulfate (HS) and providing carbon, nitrogen and sulfate sources for host microorganisms. It has long been used to deduce the structure of HS and heparin motifs; however, the structure of its own is unknown. Here we report the crystal structure of the HepIII from Bacteroides thetaiotaomicron at a resolution of 1.6 Å. The overall architecture of HepIII belongs to the (α/α)5 toroid subclass with an N-terminal toroid-like domain and a C-terminal β-sandwich domain. Analysis of this high-resolution structure allows us to identify a potential HS substrate binding site in a tunnel between the two domains. A tetrasaccharide substrate bound model suggests an elimination mechanism in the HS degradation. Asn260 and His464 neutralize the carboxylic group, whereas Tyr314 serves both as a general base in C-5 proton abstraction, and a general acid in a proton donation to reconstitute the terminal hydroxyl group, respectively. The structure of HepIII and the proposed reaction model provide a molecular basis for its potential practical utilization and the mechanism of its eliminative degradation for HS polysaccarides.

References

  1. Bornemann, D.J., Duncan, J.E., Staatz, W., Selleck, S., and Warrior, R. (2004). Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131, 1927–1938.

    Article  Google Scholar 

  2. Bulow, H.E., and Hobert, O. (2006). The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22, 375–407.

    Article  Google Scholar 

  3. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37, D233–238.

    Article  Google Scholar 

  4. Capila, I., and Linhardt, R.J. (2002). Heparin-protein interactions. Angew Chem Int Ed Engl 41, 391–412.

    Article  Google Scholar 

  5. CCP4 (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760–763.

    Article  Google Scholar 

  6. Davies, G.J., Wilson, K.S., and Henrissat, B. (1997). Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321(Pt 2), 557–559.

    Article  Google Scholar 

  7. Desai, U.R., Wang, H.M., and Linhardt, R.J. (1993a). Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry 32, 8140–8145.

    Article  Google Scholar 

  8. Desai, U.R., Wang, H.M., and Linhardt, R.J. (1993b). Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch Biochem Biophys 306, 461–468.

    Article  Google Scholar 

  9. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132.

    Article  Google Scholar 

  10. Ernst, S., Langer, R., Cooney, C.L., and Sasisekharan, R. (1995). Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol 30, 387–444.

    Article  Google Scholar 

  11. Esko, J.D., and Selleck, S.B. (2002). Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71, 435–471.

    Article  Google Scholar 

  12. Godavarti, R., and Sasisekharan, R. (1996). A comparative analysis of the primary sequences and characteristics of heparinases I, II, and III from Flavobacterium heparinum. Biochem Biophys Res Commun 229, 770–777.

    Article  Google Scholar 

  13. Guimond, S.E., and Turnbull, J.E. (1999). Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr Biol 9, 1343–1346.

    Article  Google Scholar 

  14. Han, C., Belenkaya, T.Y., Khodoun, M., Tauchi, M., and Lin, X. (2004). Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131, 1563–1575.

    Article  Google Scholar 

  15. Han, Y.H., Garron, M.L., Kim, H.Y., Kim, W.S., Zhang, Z., Ryu, K.S., Shaya, D., Xiao, Z., Cheong, C., Kim, Y.S., et al. (2009). Structural snapshots of heparin depolymerization by heparin lyase I. J Biol Chem 284, 34019–34027.

    Article  Google Scholar 

  16. Harmer, N.J. (2006). Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochem Soc Trans 34, 442–445.

    Article  Google Scholar 

  17. Jackson, R.L., Busch, S.J., and Cardin, A.D. (1991). Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71, 481–539.

    Google Scholar 

  18. Kamimura, K., Koyama, T., Habuchi, H., Ueda, R., Masu, M., Kimata, K., and Nakato, H. (2006). Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. J Cell Biol 174, 773–778.

    Article  Google Scholar 

  19. Kan, M., Wang, F., Xu, J., Crabb, J.W., Hou, J., and McKeehan, W.L. (1993). An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 259, 1918–1921.

    Article  Google Scholar 

  20. Kan, M., Wu, X., Wang, F., and McKeehan, W.L. (1999). Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 274, 15947–15952.

    Article  Google Scholar 

  21. Kjellen, L., and Lindahl, U. (1991). Proteoglycans: structures and interactions. Annu Rev Biochem 60, 443–475.

    Article  Google Scholar 

  22. Kussie, P.H., Hulmes, J.D., Ludwig, D.L., Patel, S., Navarro, E.C., Seddon, A.P., Giorgio, N.A., and Bohlen, P. (1999). Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun 261, 183–187.

    Article  Google Scholar 

  23. Lamanna, W.C., Frese, M.A., Balleininger, M., and Dierks, T. (2008). Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J Biol Chem 283, 27724–27735.

    Article  Google Scholar 

  24. Linhardt, R.J., Galliher, P.M., and Cooney, C.L. (1986). Polysaccharide lyases. Appl Biochem Biotechnol 12, 135–176.

    Article  Google Scholar 

  25. Linhardt, R.J., Turnbull, J.E., Wang, H.M., Loganathan, D., and Gallagher, J.T. (1990). Examination of the substrate specificity of heparin and heparan sulfate lyases. Biochemistry 29, 2611–2617.

    Article  Google Scholar 

  26. Lohse, D.L., and Linhardt, R.J. (1992). Purification and characterization of heparin lyases from Flavobacterium heparinum. J Biol Chem 267, 24347–24355.

    Google Scholar 

  27. Lunin, V.V., Li, Y., Linhardt, R.J., Miyazono, H., Kyogashima, M., Kaneko, T., Bell, A.W., and Cygler, M. (2004). High-resolution crystal structure of Arthrobacter aurescens chondroitin AC lyase: an enzyme-substrate complex defines the catalytic mechanism. J Mol Biol 337, 367–386.

    Article  Google Scholar 

  28. Luo, Y., Huang, X., and McKeehan, W.L. (2007). High yield, purity and activity of soluble recombinant Bacteroides thetaiotaomicron GST-heparinase I from Escherichia coli. Arch Biochem Biophys 460, 17–24.

    Article  Google Scholar 

  29. Luo, Y., Ye, S., Kan, M., and McKeehan, W.L. (2006). Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 281, 21052–21061.

    Article  Google Scholar 

  30. Maccarana, M., Sakura, Y., Tawada, A., Yoshida, K., and Lindahl, U. (1996). Domain structure of heparan sulfates from bovine organs. J Biol Chem 271, 17804–17810.

    Article  Google Scholar 

  31. Mayans, O., Scott, M., Connerton, I., Gravesen, T., Benen, J., Visser, J., Pickersgill, R., and Jenkins, J. (1997). Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure 5, 677–689.

    Article  Google Scholar 

  32. McCarter, J.D., and Withers, S.G. (1994). Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4, 885–892.

    Article  Google Scholar 

  33. Moffat, C.F., McLean, M.W., Long, W.F., and Williamson, F.B. (1991). Heparinase II from Flavobacterium heparinum. Action on chemically modified heparins. Eur J Biochem 197, 449–459.

    Article  Google Scholar 

  34. Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240–255.

    Article  Google Scholar 

  35. Nader, H.B., Porcionatto, M.A., Tersariol, I.L., Pinhal, M.A., Oliveira, F.W., Moraes, C.T., and Dietrich, C.P. (1990). Purification and substrate specificity of heparitinase I and heparitinase II from Flavobacterium heparinum. Analyses of the heparin and heparan sulfate degradation products by 13C NMR spectroscopy. J Biol Chem 265, 16807–16813.

    Google Scholar 

  36. Otwinowski, Z., Minor, W., and Charles W. Carter, Jr. (1997). Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology (Academic Press), pp. 307–326.

  37. Perrimon, N., and Bernfield, M. (2000). Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728.

    Article  Google Scholar 

  38. Peter, G. (1987). Alginate-modifying enzymes: A proposed unified mechanism of action for the lyases and epimerases. FEBS Letters 212, 199–202.

    Article  Google Scholar 

  39. Rapraeger, A.C., Krufka, A., and Olwin, B.B. (1991). Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708.

    Article  Google Scholar 

  40. Ren, L., Qin, X., Cao, X., Wang, L., Bai, F., Bai, G., and Shen, Y. (2011). Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2, 827–836.

    Article  Google Scholar 

  41. Sasisekharan, R., Moses, M.A., Nugent, M.A., Cooney, C.L., and Langer, R. (1994). Heparinase inhibits neovascularization. Proc Natl Acad Sci U S A 91, 1524–1528.

    Article  Google Scholar 

  42. Sasisekharan, R., and Venkataraman, G. (2000). Heparin and heparan sulfate: biosynthesis, structure and function. Curr Opin Chem Biol 4, 626–631.

    Article  Google Scholar 

  43. Schneider, T.R., and Sheldrick, G.M. (2002). Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58, 1772–1779.

    Article  Google Scholar 

  44. Shaya, D., Tocilj, A., Li, Y., Myette, J., Venkataraman, G., Sasisekharan, R., and Cygler, M. (2006). Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product. J Biol Chem 281, 15525–15535.

    Article  Google Scholar 

  45. Shaya, D., Zhao, W., Garron, M.L., Xiao, Z., Cui, Q., Zhang, Z., Sulea, T., Linhardt, R.J., and Cygler, M. (2010). Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate. J Biol Chem 285, 20051–20061.

    Article  Google Scholar 

  46. Sugahara, K., and Kitagawa, H. (2002). Heparin and heparan sulfate biosynthesis. IUBMB Life 54, 163–175.

    Article  Google Scholar 

  47. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A., and Tabata, T. (2004). Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82.

    Article  Google Scholar 

  48. Toyoshima, M., and Nakajima, M. (1999). Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274, 24153–24160.

    Google Scholar 

  49. Yayon, A., Klagsbrun, M., Esko, J.D., Leder, P., and Ornitz, D.M. (1991). Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848.

    Article  Google Scholar 

  50. Ye, S., Luo, Y., Lu, W., Jones, R.B., Linhardt, R.J., Capila, I., Toida, T., Kan, M., Pelletier, H., and McKeehan, W.L. (2001). Structural basis for interaction of FGF-1, FGF-2, and FGF-7 with different heparan sulfate motifs. Biochemistry 40, 14429–14439.

    Article  Google Scholar 

  51. Yip, V.L., and Withers, S.G. (2004). Nature’s many mechanisms for the degradation of oligosaccharides. Org Biomol Chem 2, 2707–2713.

    Article  Google Scholar 

  52. Zhang, F., Zhang, Z., Lin, X., Beenken, A., Eliseenkova, A.V., Mohammadi, M., and Linhardt, R.J. (2009). Compositional analysis of heparin/heparan sulfate interacting with fibroblast growth factor.fibroblast growth factor receptor complexes. Biochemistry 48, 8379–8386.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheng Ye.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, W., Lu, W., McKeehan, W.L. et al. Structural basis of heparan sulfate-specific degradation by heparinase III. Protein Cell 3, 950–961 (2012). https://doi.org/10.1007/s13238-012-2056-z

Download citation

Keywords

  • heparinase III
  • crystal structure
  • heparan sulfate
  • fibroblast growth factor (FGF)
  • β-elimination