Human gut microbiome: the second genome of human body

Abstract

The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50–100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

References

  1. Ahmed, S., Macfarlane, G.T., Fite, A., McBain, A.J., Gilbert, P., and Macfarlane, S. (2007). Mucosa-Associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 73, 7435–7442.

    Article  Google Scholar 

  2. Aoi, Y., Kinoshita, T., Hata, T., Ohta, H., Obokata, H., and Tsuneda, S. (2009). Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl Environ Microbiol 75, 3826–3833.

    Article  Google Scholar 

  3. Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915–1920.

    Article  Google Scholar 

  4. Bollmann, A., Lewis, K., and Epstein, S.S. (2007). Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73, 6386–6390.

    Article  Google Scholar 

  5. Child, M.W., Kennedy, A., Walker, A.W., Bahrami, B., Macfarlane, S., and Macfarlane, G.T. (2006). Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. FEMS Microbiol Ecol 55, 299–310.

    Article  Google Scholar 

  6. Davies, J. (2001). In a map for human life, count the microbes, too. Science 291, 2316.

    Article  Google Scholar 

  7. Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. (2005). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.

    Article  Google Scholar 

  8. Gaboriau-Routhiau, V., Rakotobe, S., Lécuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V., Pisi, A., De Paepe, M., Brandi, G., Eberl, G., Snel, J., Kelly, D., Cerf-Bensussan, N. (2009). The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689.

    Article  Google Scholar 

  9. Gibson, G.R., and Wang, X. (1994). Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 118, 121–127.

    Article  Google Scholar 

  10. Gill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359.

    Article  Google Scholar 

  11. Haller, D., Jobin, C. (2004). Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr 38, 123–136.

    Article  Google Scholar 

  12. Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68, 669–685.

    Article  Google Scholar 

  13. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., and Goodman, R.M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5, R245–R249.

    Article  Google Scholar 

  14. Hayashi, H., Sakamoto, M., and Benno, Y. (2002). Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 46, 819–831.

    Article  Google Scholar 

  15. Hehemann, J.H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., and Michel, G. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912.

    Article  Google Scholar 

  16. Hold, G.L., Pryde, S.E., Russell, V.J., Furrie, E., and Flint, H.J. (2002). Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39, 33–39.

    Article  Google Scholar 

  17. Hooper, L.V., and Gordon, J.I. (2001). Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.

    Article  Google Scholar 

  18. Ivanov, II., Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., Tanoue, T., Imaoka, A., Itoh, K., Takeda, K., Umesaki, Y., Honda, K., Littman, D.R. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498.

    Article  Google Scholar 

  19. Ivanov, II., Frutos Rde, L., Manel, N., Yoshinaga, K., Rifkin, D.B., Sartor, R.B., Finlay, B.B., Littman, D.R. (2008). Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349.

    Article  Google Scholar 

  20. Kitahara, M., Sakamoto, M., Ike, M., Sakata, S., and Benno, Y. (2005). Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55, 2143–2147.

    Article  Google Scholar 

  21. Kurokawa, K., Itoh, T., Kuwahara, T., Oshima, K., Toh, H., Toyoda, A., Takami, H., Morita, H., Sharma, V.K., Srivastava, T.P., et al. (2007). Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14, 169–181.

    Article  Google Scholar 

  22. Langendijk, P.S., Schut, F., Jansen, G.J., Raangs, G.C., Kamphuis, G.R., Wilkinson, M.H.F., and Welling, G.W. (1995). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. With genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 3069–3075.

    Google Scholar 

  23. Lederberg, J., and McCray, A.T. (2001). ’Ome Sweet’ Omics—a genealogical treasury of words. The Scientist 15, 8.

    Google Scholar 

  24. Ley, R.E., Peterson, D.A., and Gordon, J.I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848.

    Article  Google Scholar 

  25. Macfarlane, G.T., and Macfarlane, S. (2007). Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol 18, 156–162.

    Article  Google Scholar 

  26. Macfarlane, G.T., Gibson, G.R., and Cummings, J.H. (1992). Comparison of fermentation reactions in different regions of the human colon. J Appl Bacterial 72, 57–64.

    Article  Google Scholar 

  27. Macfarlane, G.T., Macfarlane, S., and Gibson, G.R. (1998). Use of a three stage compound continuous culture systems to investigate bacterial growth and metabolism in the human colonic microbiota. Microb Ecol 35, 180–187.

    Article  Google Scholar 

  28. Martinon, F., and Tschopp, J.T. (2005). NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26, 447–454.

    Article  Google Scholar 

  29. Michelsen, K.S., Aicher, A., Mohaupt, M., Hartung, T., Dimmeler, S., Kirschning, C.J., and Schumann, R.R. (2001). The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCS). Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2. J Biol Chem 276, 25680–25686.

    Article  Google Scholar 

  30. Nichols, D., Cahoon, N., Trakhtenberg, E.M., Pham, L., Mehta, A., Belanger, A., Kanigan, T., Lewis, K., and Epstein, S.S. (2010). Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76, 2445–2450.

    Article  Google Scholar 

  31. Palframan, R.J., Gibson, G.R., and Rastall, R.A. (2002). Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe 8, 287–292.

    Article  Google Scholar 

  32. Peterson, J., Garges, S., Giovanni, M., McInnes, P., Wang, L., Schloss, J.A., Bonazzi, V., McEwen, J.E., Wetterstrand, K.A., Deal, C., et al., and the NIH HMP Working Group. (2009). The NIH Human Microbiome Project. Genome Res 19, 2317–2323.

    Article  Google Scholar 

  33. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al., and the MetaHIT Consortium. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.

    Article  Google Scholar 

  34. Relman, D.A. (2002). New technologies, human-microbe interactions, and the search for previously unrecognized pathogens. J Infect Dis 186, S254–S258.

    Article  Google Scholar 

  35. Relman, D.A., and Falkow, S. (2001). The meaning and impact of the human genome sequence for microbiology. Trends Microbiol 9, 206–208.

    Article  Google Scholar 

  36. Savage, D.C. (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107–133.

    Article  Google Scholar 

  37. Suau, A., Bonnet, R., Sutren, M., Godon, J.J., Gibson, G.R., Collins, M.D., and Doré, J. (1999). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 4799–4807.

    Google Scholar 

  38. Tap, J., Mondot, S., Levenez, F., Pelletier, E., Caron, C., Furet, J.P., Ugarte, E., Muñoz-Tamayo, R., Paslier, D.L., Nalin, R., et al. (2009). Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11, 2574–2584.

    Article  Google Scholar 

  39. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. (2007). The human microbiome project. Nature 449, 804–810.

    Article  Google Scholar 

  40. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457, 480–484.

    Article  Google Scholar 

  41. Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A., Setoyama, H. (1995). Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 39, 555–562.

    Article  Google Scholar 

  42. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74.

    Article  Google Scholar 

  43. Wang, X., Gibson, G.R. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol 75, 373–380.

    Article  Google Scholar 

  44. Wang, X., Heazlewood, S.P., Krause, D.O., and Florin, T.H. (2003). Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95, 508–520.

    Article  Google Scholar 

  45. Winitz, M., Adams, R.F., Seedman, D.A., Davis, P.N., Jayko, L.G., and Hamilton, J.A. (1970). Studies in metabolic nutrition employing chemically defined diets. II. Effects on gut microflora populations. Am J Clin Nutr 23, 546–559.

    Google Scholar 

  46. Yamauchi, K.E., Snel, J. (2000). Transmission electron microscopic demonstration of phagocytosis and intracellular processing of segmented filamentous bacteria by intestinal epithelial cells of the chick ileum. Infect Immun 68, 6496–6504.

    Article  Google Scholar 

  47. Yin, Y., Lei, F., Zhu, L., Li, S., Wu, Z., Zhang, R., Gao, G.F., Zhu, B., Wang, X. (2010). Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. ISME J 4, 367–376.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Baoli Zhu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, B., Wang, X. & Li, L. Human gut microbiome: the second genome of human body. Protein Cell 1, 718–725 (2010). https://doi.org/10.1007/s13238-010-0093-z

Download citation

Keywords

  • Human Microbiome Project
  • Human Microbiota
  • Core Microbiome
  • Human Intestinal Microbiota
  • Functional Gene Group