Advertisement

Protein & Cell

, Volume 1, Issue 6, pp 514–519 | Cite as

Dynamic interplay between viral adaptation and immune recognition during HIV-1 infection

Mini-Review

Abstract

Untreated human immunodeficiency virus (HIV) infections usually lead to death from AIDS, although the rate of the disease progression varies widely among individuals. The cytotoxic T lymphocyte (CTL) response, which is restricted by highly polymorphic MHC class I alleles, plays a central role in controlling HIV replication. It is now recognized that the antiviral efficacy of CTLs at the single cell level is dependent on their antigen specificity and is important in determining the quality of host response to viruses so that the individual will remain asymptomatic. However, because of the extreme mutational plasticity of HIV, HIV-specific CTL responses are continuously and dynamically changing. In order to rationally design an effective vaccine, the questions as to what constitutes an effective antiviral CTL response and what characterizes a potent antigenic peptide to induce such responses are becoming highlighted as needing to be answered.

Keywords

HIV/AIDS peptide-MHC complex HLA class I cytotoxic T lymphocyte immune escape 

References

  1. Allen, T.M., Altfeld, M., Geer, S.C., Kalife, E.T., Moore, C., O’sullivan, K.M., Desouza, I., Feeney, M.E., Eldridge, R.L., Maier, E.L., et al. (2005a). Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 79, 13239–13249.CrossRefGoogle Scholar
  2. Allen, T.M., Yu, X.G., Kalife, E.T., Reyor, L.L., Lichterfeld, M., John, M., Cheng, M., Allgaier, R.L., Mui, S., Frahm, N., et al. (2005b). De novo generation of escape variant-specific CD8+ T-cell responses following cytotoxic T-lymphocyte escape in chronic human immunodeficiency virus type 1 infection. J Virol 79, 12952–12960.CrossRefGoogle Scholar
  3. Apostolopoulos, V., Lazoura, E., and Yu, M. (2008). MHC and MHC-like molecules: structural perspectives on the design of molecular vaccines. Adv Exp Med Biol 640, 252–267.CrossRefGoogle Scholar
  4. Appay, V., Nixon, D.F., Donahoe, S.M., Gillespie, G.M., Dong, T., King, A., Ogg, G.S., Spiegel, H.M., Conlon, C., Spina, C.A., et al. (2000). HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192, 63–75.CrossRefGoogle Scholar
  5. Baker, B.M., Block, B.L., Rothchild, A.C., and Walker, B.D. (2009). Elite control of HIV infection: implications for vaccine design. Expert Opin Biol Ther 9, 55–69.CrossRefGoogle Scholar
  6. Bangham, C.R.M. (2009). CTL quality and the control of human retroviral infections. Eur J Immunol 39, 1700–1712.CrossRefGoogle Scholar
  7. Betts, M.R., Ambrozak, D.R., Douek, D.C., Bonhoeffer, S., Brenchley, J.M., Casazza, J.P., Koup, R.A., and Picker, L.J. (2001). Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J Virol 75, 11983–11991.CrossRefGoogle Scholar
  8. Borbulevych, O.Y., Baxter, T.K., Yu, Z., Restifo, N.P., and Baker, B.M. (2005). Increased immunogenicity of an anchor-modified tumor-associated antigen is due to the enhanced stability of the peptide/MHC complex: implications for vaccine design. J Immunol 174, 4812–4820.CrossRefGoogle Scholar
  9. Borbulevych, O.Y., Piepenbrink, K.H., Gloor, B.E., Scott, D.R., Sommese, R.F., Cole, D.K., Sewell, A.K., and Baker, B.M. (2009). T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity 31, 885–896.CrossRefGoogle Scholar
  10. Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M., and Oldstone, M.B. (1994). Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68, 6103–6110.Google Scholar
  11. Carlson, J.M., and Brumme, Z.L. (2008). HIV evolution in response to HLA-restricted CTL selection pressures: a population-based perspective. Microbes Infect 10, 455–461.CrossRefGoogle Scholar
  12. Carrington, M., Nelson, G.W., Martin, M.P., Kissner, T., Vlahov, D., Goedert, J.J., Kaslow, R., Buchbinder, S., Hoots, K., and O’Brien, S.J. (1999). HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752.CrossRefGoogle Scholar
  13. Feeney, M.E., Tang, Y., Pfafferott, K., Roosevelt, K.A., Draenert, R., Trocha, A., Yu, X.G., Verrill, C., Allen, T., Moore, C., et al. (2005). HIV-1 viral escape in infancy followed by emergence of a variantspecific CTL response. J Immunol 174, 7524–7530.CrossRefGoogle Scholar
  14. Goulder, P.J.R., Altfeld, M.A., Rosenberg, E.S., Nguyen, T., Tang, Y., Eldridge, R.L., Addo, M.M., He, S., Mukherjee, J.S., Phillips, M.N., et al. (2001). Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J Exp Med 193, 181–194.CrossRefGoogle Scholar
  15. Goulder, P.J.R., and Watkins, D.I. (2004). HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4, 630–640.CrossRefGoogle Scholar
  16. Hillig, R.C., Hülsmeyer, M., Saenger, W., Welfle, K., Misselwitz, R., Welfle, H., Kozerski, C., Volz, A., Uchanska-Ziegler, B., and Ziegler, A. (2004). Thermodynamic and structural analysis of peptide- and allele-dependent properties of two HLA-B27 subtypes exhibiting differential disease association. J Biol Chem 279, 652–663.CrossRefGoogle Scholar
  17. Hülsmeyer, M., Welfle, K., Pöhlmann, T., Misselwitz, R., Alexiev, U., Welfle, H., Saenger, W., Uchanska-Ziegler, B., and Ziegler, A. (2005). Thermodynamic and structural equivalence of two HLA-B27 subtypes complexed with a self-peptide. J Mol Biol 346, 1367–1379.CrossRefGoogle Scholar
  18. Kosmrlj, A., Read, E.L., Qi, Y., Allen, T.M., Altfeld, M., Deeks, S.G., Pereyra, F., Carrington, M., Walker, B.D., and Chakraborty, A.K. (2010). Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature 465, 350–354.CrossRefGoogle Scholar
  19. Koup, R.A., Safrit, J.T., Cao, Y., Andrews, C.A., McLeod, G., Borkowsky, W., Farthing, C., and Ho, D.D. (1994). Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68, 4650–4655.Google Scholar
  20. Migueles, S.A., Laborico, A.C., Shupert, W.L., Sabbaghian, M.S., Rabin, R., Hallahan, C.W., Van Baarle, D., Kostense, S., Miedema, F., McLaughlin, M., et al. (2002). HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3, 1061–1068.CrossRefGoogle Scholar
  21. Motozono, C., Yanaka, S., Tsumoto, K., Takiguchi, M., and Ueno, T. (2009). Impact of intrinsic cooperative thermodynamics of peptide- MHC complexes on antiviral activity of HIV-specific CTL. J Immunol 182, 5528–5536.CrossRefGoogle Scholar
  22. Mungall, A.J., Palmer, S.A., Sims, S.K., Edwards, C.A., Ashurst, J.L., Wilming, L., Jones, M.C., Horton, R., Hunt, S.E., Scott, C.E., et al. (2003). The DNA sequence and analysis of human chromosome 6. Nature 425, 805–811.CrossRefGoogle Scholar
  23. O’Brien, S.J., Gao, X., and Carrington, M. (2001). HLA and AIDS: a cautionary tale. Trends Mol Med 7, 379–381.CrossRefGoogle Scholar
  24. O’Connell, K.A., Bailey, J.R., and Blankson, J.N. (2009). Elucidating the elite: mechanisms of control in HIV-1 infection. Trends Pharmacol Sci 30, 631–637.CrossRefGoogle Scholar
  25. Ogg, G.S., Jin, X., Bonhoeffer, S., Dunbar, P.R., Nowak, M.A., Monard, S., Segal, J.P., Cao, Y., Rowland-Jones, S.L., Cerundolo, V., et al. (1998). Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279, 2103–2106.CrossRefGoogle Scholar
  26. Rammensee, H.G., Friede, T., and Stevanoviíc, S. (1995). MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228.CrossRefGoogle Scholar
  27. Rudolph, M.G., Stanfield, R.L., and Wilson, I.A. (2006). How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24, 419–466.CrossRefGoogle Scholar
  28. Sáez-Cirión, A., Lacabaratz, C., Lambotte, O., Versmisse, P., Urrutia, A., Boufassa, F., Barré-Sinoussi, F., Delfraissy, J.-F., Sinet, M., Pancino, G., et al., and the Agence Nationale de Recherches sur le Sida EP36 HIV Controllers Study Group. (2007). HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci U S A 104, 6776–6781.CrossRefGoogle Scholar
  29. Shankarappa, R., Margolick, J.B., Gange, S.J., Rodrigo, A.G., Upchurch, D., Farzadegan, H., Gupta, P., Rinaldo, C.R., Learn, G.H., He, X., et al. (1999). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73, 10489–10502.Google Scholar
  30. Smith, K.J., Reid, S.W., Stuart, D.I., McMichael, A.J., Jones, E.Y., and Bell, J.I. (1996). An altered position of the α2 helix of MHC class I is revealed by the crystal structure of HLA-B*3501. Immunity 4, 203–213.CrossRefGoogle Scholar
  31. Stewart-Jones, G.B.E., Gillespie, G., Overton, I.M., Kaul, R., Roche, P., McMichael, A.J., Rowland-Jones, S., and Jones, E.Y. (2005). Structures of three HIV-1 HLA-B*5703-peptide complexes and identification of related HLAs potentially associated with long-term nonprogression. J Immunol 175, 2459–2468.CrossRefGoogle Scholar
  32. Tomiyama, H., Fujiwara, M., Oka, S., and Takiguchi, M. (2005). Cutting Edge: Epitope-dependent effect of Nef-mediated HLA class I down-regulation on ability of HIV-1-specific CTLs to suppress HIV-1 replication. J Immunol 174, 36–40.CrossRefGoogle Scholar
  33. Ueno, T., Idegami, Y., Motozono, C., Oka, S., and Takiguchi, M. (2007). Altering effects of antigenic variations in HIV-1 on antiviral effectiveness of HIV-specific CTLs. J Immunol 178, 5513–5523.CrossRefGoogle Scholar
  34. Ueno, T., Motozono, C., Dohki, S., Mwimanzi, P., Rauch, S., Fackler, O.T., Oka, S., and Takiguchi, M. (2008). CTL-mediated selective pressure influences dynamic evolution and pathogenic functions of HIV-1 Nef. J Immunol 180, 1107–1116.CrossRefGoogle Scholar
  35. Ueno, T., Tomiyama, H., Fujiwara, M., Oka, S., and Takiguchi, M. 2004). Functionally impaired HIV-specific CD8 T cells show high affinity TCR-ligand interactions. J Immunol 173, 5451–5457.CrossRefGoogle Scholar
  36. Yang, O.O., Kalams, S.A., Trocha, A., Cao, H., Luster, A., Johnson, R.P., and Walker, B.D. (1997). Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J Virol 71, 3120–3128.Google Scholar
  37. Yang, O.O., Sarkis, P.T.N., Trocha, A., Kalams, S.A., Johnson, R.P., and Walker, B.D. (2003). Impacts of avidity and specificity on the antiviral efficiency of HIV-1-specific CTL. J Immunol 171, 3718–3724.CrossRefGoogle Scholar
  38. Yewdell, J.W. (2006). Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25, 533–543.CrossRefGoogle Scholar
  39. Yu, Z., Theoret, M.R., Touloukian, C.E., Surman, D.R., Garman, S.C., Feigenbaum, L., Baxter, T.K., Baker, B.M., and Restifo, N.P. (2004). Poor immunogenicity of a self/tumor antigen derives from peptide-MHC-I instability and is independent of tolerance. J Clin Invest 114, 551–559.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chihiro Motozono
    • 1
  • Philip Mwimanzi
    • 1
  • Takamasa Ueno
    • 1
  1. 1.Center for AIDS ResearchKumamoto UniversityKumamotoJapan

Personalised recommendations