Skip to main content
Log in

Exploring the association of FTO rs9939609 and SIRT1 rs7069102 genetic variants with obesity: A case–control study in a sample of Pakistani population

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Disturbances in energy homeostasis may result in positive energy balance and excessive body weight. Susceptibility to this imbalance is primarily determined by the effect of genetic variants. The current case–control study was aimed to evaluate the possible association of FTO rs9939609 and SIRT1 rs7069102 genetic variants with obesity and its associated behavioral, anthropometric, and metabolic traits in a sample population of Pakistanis. A total of 612 participants were enrolled for this study, encompassing the same count of control and case subjects. Genotyping of both genetic variants was achieved by means of allelic discrimination-based TaqMan genotyping assay. Anthropometric indices were measured via standard procedures and lifestyle behavioral data was collected via a questionnaire. Metabolic markers were assessed by conducting corresponding biochemical assays. IBM SPSS software program was used for statistical analyses. The findings reveal that both genetic variants, FTO rs9939609 and SIRT1 rs7069102, do not appear to be associated with the risk of obesity and its related traits (anthropometric, metabolic, and lifestyle behaviors), in the population examined under the current study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmed B, Konje JC. The epidemiology of obesity in reproduction. Best Pract Res Clin Obstet Gynaecol. 2023;11: 102342. https://doi.org/10.1016/j.bpobgyn.2023.102342.

    Article  Google Scholar 

  2. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33:920–2. https://doi.org/10.2337/dc09-1825.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cho HW, Jin HS, Eom YB. The interaction between FTO rs9939609 and physical activity is associated with a 2-fold reduction in the risk of obesity in Korean population. Am J Hum Biol. 2021;33: e23489. https://doi.org/10.1002/ajhb.23489.

    Article  PubMed  Google Scholar 

  4. Duicu C, Marginean CO, Voidazan S, Tripon F, Banescu C. FTO rs9939609 SNP is associated with adiponectin and leptin levels and the risk of obesity in a cohort of Romanian children population. Medicine. 2016;95: e3709. https://doi.org/10.1097/MD.0000000000003709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grant SF, Li M, Bradfield JP, Kim CE, Annaiah K, Santa E, et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS ONE. 2008;3: e1746. https://doi.org/10.1371/journal.pone.0001746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hasselbalch AL, Angquist L, Christiansen L, Heitmann BL, Kyvik KO, Sørensen TI. A variant in the fat mass and obesity-associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) do not influence dietary intake. J Nutr. 2010;140:831–4. https://doi.org/10.3945/jn.109.114439.

    Article  CAS  PubMed  Google Scholar 

  7. Hsiao TJ, Lin E. Association of a common rs9939609 variant in the fat mass and obesity-associated (FTO) gene with obesity and metabolic phenotypes in a Taiwanese population: a replication study. J Genet. 2016;95:595–601. https://doi.org/10.1007/s12041-016-0671-9.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson AS, Pollock ML. Practical assessment of body composition. Phys Sportsmed. 1985;13:76–90. https://doi.org/10.1080/00913847.1985.11708790.

    Article  CAS  PubMed  Google Scholar 

  9. Kahn HS. The, “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005;5:26. https://doi.org/10.1186/1471-2261-5-26.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kalous KS. Regulation of sirtuin NAD+-dependent deacylase activity by cellular oxidants (Doctoral dissertation, The Medical College of Wisconsin, 2020.

  11. Kilic U, Gok O, Elibol-Can B, Ozgen IT, Erenberk U, Uysal O, et al. SIRT1 gene variants are related to risk of childhood obesity. Eur J Pediatr. 2015;174:473–9. https://doi.org/10.1007/s00431-014-2424-1.

    Article  CAS  PubMed  Google Scholar 

  12. Kolesnikova O, Zaprovalna O, Radchenko A, Bondar T. Association of SIRT1 with metabolic parameters and aging rate. Biomedl Res Ther. 2023;10:5575–83. https://doi.org/10.15419/bmrat.v10i3.796.

    Article  Google Scholar 

  13. Kucher AN. The FTO gene and diseases: The role of genetic polymorphism, epigenetic modifications, and environmental factors. Russ J Genet. 2020;56:1025–43. https://doi.org/10.1134/S1022795420090136.

    Article  CAS  Google Scholar 

  14. Leite LC, Dos Santos MC, Duarte NE, Horimoto AR, Crispim F, Vieira Filho JP, et al. Association of fat mass and obesity-associated (FTO) gene rs9939609 with obesity-related traits and glucose intolerance in an indigenous population, the Xavante. Diabetes Metab Syndr: Clin Res Rev. 2022;16:102358. https://doi.org/10.1016/j.dsx.2021.102358.

    Article  CAS  Google Scholar 

  15. Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J, et al. Variants in the fat mass–and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes. 2008;57:264–8. https://doi.org/10.2337/db07-1130.

    Article  CAS  PubMed  Google Scholar 

  16. Liguori R, Labruna G, Alfieri A, Martone D, Farinaro E, Contaldo F, et al. The FTO gene polymorphism (rs9939609) is associated with metabolic syndrome in morbidly obese subjects from southern Italy. Mol Cell Probes. 2014;28:195–9. https://doi.org/10.1016/j.mcp.2014.03.004.

    Article  CAS  PubMed  Google Scholar 

  17. Lim Y, Boster J. Obesity and comorbid conditions. [Updated 2023 Aug 28]. In StatPearls. Treasure Island (FL): StatPearls https://www.ncbi.nlm.nih.gov/books/NBK574535/.

  18. Liu G, Zhu H, Lagou V, Gutin B, Stallmann-Jorgensen IS, Treiber FA, et al. FTO variant rs9939609 is associated with body mass index and waist circumference, but not with energy intake or physical activity in European-and African-American youth. BMC Med Genet. 2010;11:57. https://doi.org/10.1186/1471-2350-11-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu X, Jin Y, Li D, Zhang J, Han J, Li Y. Multidisciplinary progress in obesity research. Genes. 2022;13:1772. https://doi.org/10.3390/genes13101772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahmoud R, Kimonis V, Butler MG. Genetics of obesity in humans: a clinical review. Int J Mol Sci. 2022;23:11005. https://doi.org/10.3390/ijms231911005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mangge H, Renner W, Almer G, Weghuber D, Möller R, Horejsi R. Rs9939609 variant of the fat mass and obesity-associated gene and trunk obesity in adolescents. J Obes. 2011. https://doi.org/10.1155/2011/186368.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mohajan D, Mohajan HK. Obesity and its related diseases: a new escalating alarming in global health. J Innov Med Res. 2023;2:12–23. https://doi.org/10.56397/JIMR/2023.03.04.

    Article  Google Scholar 

  23. Muñoz-Yáñez C, Pérez-Morales R, Moreno-Macías H, Calleros-Rincón E, Ballesteros G, González RA, et al. Polymorphisms FTO rs9939609, PPARG rs1801282 and ADIPOQ rs4632532 and rs182052 but not lifestyle are associated with obesity related-traits in Mexican children. Genet Mol Biol. 2016;39:547–53. https://doi.org/10.1590/1678-4685-GMB-2015-0267.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Müller TD, Hinney A, Scherag A, Nguyen TT, Schreiner F, Schäfer H, et al. 'Fat mass and obesity associated' gene (FTO): no significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in German obese children and adolescents. BMC Med Genet. 2008;9(85):1–6. https://doi.org/10.1186/1471-2350-9-85.

    Article  CAS  Google Scholar 

  25. Ohashi J, Naka I, Kimura R, Natsuhara K, Yamauchi T, Furusawa T, et al. FTO polymorphisms in oceanic populations. J Hum Genet. 2007;52:1031–5. https://doi.org/10.1007/s10038-007-0198-2.

    Article  PubMed  Google Scholar 

  26. Peeters AV, Beckers S, Verrijken A, Mertens I, Roevens P, Peeters PJ, et al. Association of SIRT1 gene variation with visceral obesity. Hum Genet. 2008;124:431–6. https://doi.org/10.1007/s00439-008-0567-8.

    Article  CAS  PubMed  Google Scholar 

  27. Prakash J, Mittal B, Srivastava A, Awasthi S, Srivastava N. Association of FTO rs9939609 SNP with obesity and obesity-associated phenotypes in a North Indian population. Oman Med J. 2016;31:99–106. https://doi.org/10.5001/omj.2016.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quiñones M, Martínez-Grobas E, Fernø J, Pérez-Lois R, Seoane LM, Al MO. Hypothalamic actions of SIRT1 and SIRT6 on energy balance. Int J Mol Sci. 2021;22:1430. https://doi.org/10.3390/ijms22031430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramirez GG, Muñoz LB. Relationship of sedentary lifestyle with obesity and comorbidities. In: Ruiz-Tovar J, Marc-Hernandez A, editors. Physical Activity and bariatric surgery. Cham: Springer International Publishing; 2023. p. 3–16. https://doi.org/10.1007/978-3-031-26614-0_1.

    Chapter  Google Scholar 

  30. Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie. 2023;204:92–107. https://doi.org/10.1016/j.biochi.2022.09.003.

    Article  CAS  PubMed  Google Scholar 

  31. Shill LC, Alam MR. Crosstalk between FTO gene polymorphism (rs9939609) and obesity-related traits among Bangladeshi population. Health Sci Rep. 2023;6: e1414. https://doi.org/10.1002/hsr2.1414.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shimoyama Y, Suzuki K, Hamajima N, Niwa T. Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese. Transl Res: J Lab Clin Med. 2011;157:339–47. https://doi.org/10.1016/j.trsl.2011.02.004.

    Article  CAS  Google Scholar 

  33. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6:299–304. https://doi.org/10.1089/met.2008.0034.

    Article  CAS  PubMed  Google Scholar 

  34. Speakman JR. The ‘fat mass and obesity related’(FTO) gene: mechanisms of impact on obesity and energy balance. Curr Obes Rep. 2015;4:73–91. https://doi.org/10.1007/s13679-015-0143-1.

    Article  PubMed  Google Scholar 

  35. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84. https://doi.org/10.1038/s41576-019-0127-1.

    Article  CAS  PubMed  Google Scholar 

  36. Trang K, Grant SF. Genetics and epigenetics in the obesity phenotyping scenario. Rev Endocr Metab Disord. 2023;24:775–93. https://doi.org/10.1007/s11154-023-09804-6.

    Article  PubMed  Google Scholar 

  37. Veerabathiran R, Sivakumar S, Kalarani IB, Mohammed V. A review of genes associated with obesity susceptibility: findings from association studies. J Health Sci Med Res. 2023;41: e2023959. https://doi.org/10.31584/jhsmr.2023959.

    Article  Google Scholar 

  38. Wei X, Wei C, Tan Y, Dong X, Yang Z, Yan J, Luo X. Both prolonged high-fat diet consumption and calorie restriction boost hepatic NAD+ metabolism in mice. J Nutr Biochem. 2023;115: 109296. https://doi.org/10.1016/j.jnutbio.2023.109296.

    Article  CAS  PubMed  Google Scholar 

  39. Wu J, Xu J, Zhang Z, Ren J, Li Y, Wang J, et al. Association of FTO polymorphisms with obesity and metabolic parameters in Han Chinese adolescents. PLoS ONE. 2014;9: e98984. https://doi.org/10.1371/journal.pone.0098984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xi B, Shen Y, Zhang M, Liu X, Zhao X, Wu L, et al. The common rs9939609 variant of the fat mass and obesity-associated gene is associated with obesity risk in children and adolescents of Beijing. China BMC Med Genet. 2010;11:107. https://doi.org/10.1186/1471-2350-11-107.

    Article  CAS  PubMed  Google Scholar 

  41. Younes S, Ibrahim A, Al-Jurf R, Zayed H. Genetic polymorphisms associated with obesity in the Arab world: a systematic review. Int J Obes. 2021;45:1899–913. https://doi.org/10.1038/s41366-021-00867-6.

    Article  Google Scholar 

  42. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat Commun. 2016;7:12724. https://doi.org/10.1038/ncomms12724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Q, Li Y, Shi X, Yuan X. Relationship between fat mass and obesity-associated (FTO) gene polymorphisms with obesity and metabolic syndrome in ethnic Mongolians. Med Sci Monit: Int Med J Exp Clin Res. 2018;24:8232–8. https://doi.org/10.12659/MSM.910928.

    Article  CAS  Google Scholar 

  44. Zillikens MC, Meurs JB, Rivadeneira F, Amin N, Hofman A, Oostra BA, et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes. 2009;58:2828–34. https://doi.org/10.2337/db09-0536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to all the participants for their participation in the study.

Funding

This study was supported by an institutional (ICCBS) recurring grant.

Author information

Authors and Affiliations

Authors

Contributions

SR: contributed to the study concept and design, sample and data collection, analysis and interpretation of the data, and critical revision of the manuscript, HN: performed the experiments, data analysis, interpretation, and drafted the manuscript.

Corresponding author

Correspondence to Sobia Rana.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

The ethical approval was obtained from the institute's (ICCBS) Independent Ethics Committee (IEC) vide approval number is ICCBS-001-BC 2014/Protocol/1.0, dated: 11-Dec-2014.

Informed consent

Both the authors have read and approved the final manuscript, and consented to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Somnath Paul, Reviewers: Shagun Shukla, Ishita Rehman.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Nawaz, H. Exploring the association of FTO rs9939609 and SIRT1 rs7069102 genetic variants with obesity: A case–control study in a sample of Pakistani population. Nucleus (2024). https://doi.org/10.1007/s13237-024-00497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-024-00497-z

Keywords

Navigation