Skip to main content
Log in

Identification and validation of defense related candidate genes in Sesamum under artificial inoculation of Macrophomina phaseolina

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Sesame (Sesamum indicum L.) suffers significant production loss due to the opportunistic fungus Macrophomina phaseolina which causes charcoal rot. Climate change-induced increasing temperatures and irregular seasonal patterns create the propitious disease triangle necessary for the infestation of this destructive fungus. This demands an improved sesame genotype for enhanced charcoal rot tolerance, achieved through our novel inter-specific hybrid (S. indicum x S. mulayanum). To get a global overview of transcripts responsive to induced infection of M. phaseolina, RNA-sequencing of cultivated (S. indicum), wild (S. mulayanum) and inter-specific hybrid was performed. Several potential differentially expressed genes (DEGs) which could foster an understanding of the Mp-sesame-pathosystem, were subjected to fluorescence-based quantitative real-time PCR (RT-qPCR). Potential candidate genes were annotated with model plant Arabidopsis to find putative functions based on conserved sequence similarity. Bioinformatics analysis was performed to gain insights into cellular localization, isoelectric point and protein molecular weight of identified candidate genes. Our combined results of the disease susceptibility index, and expression analysis of candidate genes highlighted the role of cell wall-related genes, phenylpropanoid pathway, hydrolases and expression trends in inter-specific hybrid, suggested enhanced tolerance to charcoal rot. Our study findings would bolster the understanding of the defense mechanism of sesame in response to M. phaseolina.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All relevant data are included in the paper. The codes used in this manuscript can be provided upon request. Visit https://github.com/mushtaqgene for more information.

References

  1. Abbas S, Kamran M, Sibt-E-Abbas M, Teferra TF, Tauseef M, Anwar MJ. Nutritional and therapeutic potential of sesame seeds. J Food Qual. 2022. https://doi.org/10.1155/2022/6163753.

    Article  Google Scholar 

  2. Aci MM, Tsalgatidou PC, Boutsika A, Dalianis A, Michaliou M, Delis C, et al. Comparative transcriptome profiling and co-expression network analysis uncover the key genes associated to pear petal defense responses against Monilinia laxa. Front Plant Sci. 2024;15:554. https://doi.org/10.3389/fpls.2024.1377937.

    Article  Google Scholar 

  3. Akhtar KP, Sarwar G, Arshad HMI. Temperature response, pathogenicity, seed infection and mutant evaluation against Macrophomina phaseolina causing charcoal rot disease of sesame. Arch Phytopathol Plant Protect. 2011;44(4):320–30. https://doi.org/10.1080/03235400903052945.

    Article  Google Scholar 

  4. Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33(21):3387–95. https://doi.org/10.1093/bioinformatics/btx431.

    Article  CAS  PubMed  Google Scholar 

  5. de Abreu-Neto JB, Turchetto-Zolet AC, de Oliveira LF, Bodanese Zanettini MH, Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J. 2013;280(7):1604–16. https://doi.org/10.1111/febs.12159.

    Article  CAS  PubMed  Google Scholar 

  6. Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis Gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–54. https://doi.org/10.1104/pp.108.121038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bang SW, Choi S, Jin X, Jung SE, Choi JW, Seo JS, et al. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Plant Biotechnol J. 2022;20(4):736–47. https://doi.org/10.1111/pbi.13752.

    Article  CAS  PubMed  Google Scholar 

  8. Bart RS, Chern M, Vega-Sánchez ME, Canlas P, Ronald PC. Rice Snl6, a Cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv oryzae. PLoS Genet. 2010;6(9):e1001123. https://doi.org/10.1371/journal.pgen.1001123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bauer K, Nayem S, Lehmann M, Wenig M, Shu LJ, Ranf S, et al. β-D-XYLOSIDASE 4 modulates systemic immune signaling in Arabidopsis thaliana. Front Plant Sci. 2023;13:1096800. https://doi.org/10.3389/fpls.2022.1096800.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Battaglia M, Covarrubias AA. Late Embryogenesis Abundant (LEA) proteins in legumes. Front Plant Sci. 2013;4:45960. https://doi.org/10.3389/fpls.2013.00190.

    Article  CAS  Google Scholar 

  11. Berrocal-Lobo M, Molina A, et al. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002;29(1):23–32. https://doi.org/10.1046/j.1365-313x.2002.01191.x.

    Article  CAS  PubMed  Google Scholar 

  12. Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, et al. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in arabidopsis offers tailored protection against abiotic stress. Plant Cell. 2014;26(7):3148–66. https://doi.org/10.1105/tpc.114.127316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chai G, Li C, Xu F, Li Y, Shi X, Wang Y, et al. Three endoplasmic reticulum-associated fatty acyl-coenzyme reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2018;18(1):1–16. https://doi.org/10.1186/s12870-018-1256-y.

    Article  CAS  Google Scholar 

  14. Chen Q-F, Xu L, Tan W-J, Chen L, Qi H, Xie L-J, et al. Disruption of the Arabidopsis defense regulator genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Cell Com. 2015. https://doi.org/10.1016/j.molp.2015.06.009.

    Article  Google Scholar 

  15. Cohen R, Elkabetz M, Paris HS, Gur A, Dai N, Rabinovitz O, et al. Occurrence of Macrophomina phaseolina in Israel: challenges for disease management and crop Germplasm enhancement. Plant Dis. 2022;106(1):15–25. https://doi.org/10.1094/PDIS-07-21-1390-FE.

    Article  CAS  PubMed  Google Scholar 

  16. Comini E, Rubiales D, Reveglia P. Variability of fatty acid composition and lignan content in sesame Germplasm, and effect of roasting. ACS Food Sci Technol. 2023;3(10):1747–58. https://doi.org/10.1021/acsfoodscitech.3c00304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daras G, Templalexis D, Avgeri F, Tsitsekian D, Karamanou K, Rigas S. Updating insights into the catalytic domain properties of plant cellulose synthase (Cesa) and cellulose synthase-like (csl) proteins. Molecules. 2021;26(14):4335. https://doi.org/10.3390/molecules26144335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dhar N, Caruana J, Erdem I, Subbarao KV, Klosterman SJ, Raina R. The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 regulates dark-induced senescence and plays contrasting roles in defense against bacterial and fungal pathogens. Molecular Plant-Microbe Interactions®. 2020;33(5):754–66. https://doi.org/10.1094/MPMI-11-19-0329-R.

    Article  CAS  PubMed  Google Scholar 

  19. Doan TTP, Domergue F, Fournier AE, Vishwanath SJ, Rowland O, Moreau P, et al. Biochemical characterization of a chloroplast localized fatty acid reductase from Arabidopsis thaliana. Biochim Biophys Acta Mol Cell Biol Lipids. 2012;1821:1244–55. https://doi.org/10.1016/j.bbalip.2011.10.019.

    Article  CAS  Google Scholar 

  20. Dossa K, Diouf D, Wang L, Wei X, Zhang Y, Niang M, et al. The emerging oilseed crop Sesamum indicum enters the “Omics” era. Front Plant Sci. 2017;8:964. https://doi.org/10.3389/fpls.2017.01154.

    Article  Google Scholar 

  21. Draeger C, Ndinyanka Fabrice T, Gineau E, Mouille G, Kuhn BM, Moller I, et al. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol. 2015;15(1):1–11. https://doi.org/10.1186/s12870-015-0548-8.

    Article  CAS  Google Scholar 

  22. Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J. 2019;38(7):e100353. https://doi.org/10.15252/embj.2018100353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dutta D, Awon VK, Gangopadhyay G. Transcriptomic dataset of cultivated (Sesamum indicum), wild (S. mulayanum), and interspecific hybrid sesame in response to induced Macrophomina phaseolina infection. Data Brief. 2020;33:106448. https://doi.org/10.1016/j.dib.2020.106448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dutta D, Awon VK, Gangopadhyay G. Amino acid substitution in the conserved motifs of a hypothetical R-protein in sesame imparts a significant effect on ADP binding position and hydrogen bond interaction. Physiol Mol Plant Pathol. 2021;113: 101588. https://doi.org/10.1016/j.pmpp.2020.101588.

    Article  CAS  Google Scholar 

  25. Eynck C, Séguin-Swartz G, Clarke WE, Parkin IAP. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol Plant Pathol. 2012;13(8):887–99. https://doi.org/10.1111/j.1364-3703.2012.00798.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu M-C, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Hen-Ming W, Cheung AY, Dinneny JR. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol. 2018;28(5):666-675.e5. https://doi.org/10.1016/j.cub.2018.01.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu Z, Zeng L, Kosma D, Xia Y, Ziv C, Zhao Z, et al. Multifunctional roles of plant cuticle during plant-pathogen interactions. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01088.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–8. https://doi.org/10.1093/nar/gkg563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. German L, Yeshvekar R, Benitez-Alfonso Y. Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. Plant Cell Environ. 2023;46(2):391–404. https://doi.org/10.1111/pce.14510.

    Article  CAS  PubMed  Google Scholar 

  30. Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, et al. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 2003;36(3):353–65. https://doi.org/10.1046/j.1365-313x.2003.01877.x.

    Article  CAS  PubMed  Google Scholar 

  31. Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Planta VB, et al. Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta. 2003;217(2):218–28. https://doi.org/10.1007/s00425-003-0987-6.

    Article  CAS  PubMed  Google Scholar 

  32. Gronnier J, Franck CM, Stegmann M, Defalco TA, Abarca A, von Arx M, et al. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. Elife. 2022;11:e1011087. https://doi.org/10.1371/journal.pgen.1011087.

    Article  CAS  Google Scholar 

  33. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA. 2010;107(29):12866–71. https://doi.org/10.1073/pnas.1007092107.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gupta GK, Sharma SK, Ramteke R. Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid with special reference to charcoal rot of Soybean (Glycine max (L.) Merrill). J Phytopathol. 2012;160(4):167–80. https://doi.org/10.1111/j.1439-0434.2012.01884.x.

    Article  Google Scholar 

  35. Gupta S, Guérin A, Herger A, Hou X, Schaufelberger M, Roulard R, et al. Growth-inhibiting effects of the unconventional plant APYRASE 7 of Arabidopsis thaliana influences the LRX/RALF/FER growth regulatory module. PLoS Genet. 2024;20(1): e1011087. https://doi.org/10.1371/journal.pgen.1011087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Horton P, Park K, Obayashi T, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35:585–7. https://doi.org/10.1093/nar/gkm259.

    Article  Google Scholar 

  37. Yinan J, Dianming G, Zhe W, Lijun L, Jingjing He, Xiaowei H, et al. How plants manage pathogen infection. EMBO Rep. 2023. https://doi.org/10.1038/s44319-023-00023-3.

    Article  Google Scholar 

  38. Juraniec M, Gajda B. Cellulose biosynthesis in plants–the concerted action of CESA and non-CESA proteins. Biol Plant. 2020;64:363–77. https://doi.org/10.32615/bp.2020.065.

    Article  CAS  Google Scholar 

  39. Kalendar R, Tselykh TV, Khassenov B, Ramanculov EM. Introduction on using the FastPCR software and the related Java web tools for PCR and oligonucleotide assembly and analysis. Methods Mol Biol. 2017;1620:33–64. https://doi.org/10.1007/978-1-4939-7060-5_2.

    Article  CAS  PubMed  Google Scholar 

  40. Kaur S, Dhillon GS, Brar SK, Vallad GE, Chand R, Chauhan VB. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol. 2012;38(2):136–51. https://doi.org/10.3109/1040841X.2011.640977.

    Article  CAS  PubMed  Google Scholar 

  41. Kesten C, Gámez-Arjona FM, Menna A, Scholl S, Dora S, Huerta AI, et al. Pathogen-induced pH changes regulate the growth-defense balance in plants. EMBO J. 2019;38(24):101822. https://doi.org/10.15252/embj.2019101822.

    Article  CAS  Google Scholar 

  42. Lewandowska M, Keyl A. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytol. 2020;227(3):698–713. https://doi.org/10.1111/nph.16571.

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell. 2001;13:1567–85. https://doi.org/10.1105/TPC.010111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li S, Lei L, Somerville CR, Gu Y. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA. 2012;109(1):185–90. https://doi.org/10.1073/pnas.1118560109.

    Article  PubMed  Google Scholar 

  45. Liu D, Wu J, Lin L, Li P, Li S, Wang Y, et al. Overexpression of Cinnamoyl-CoA Reductase 2 in Brassica napus increases resistance to Sclerotinia sclerotiorum by affecting lignin biosynthesis. Front Plant Sci. 2021;12: 732733. https://doi.org/10.1038/s41586-021-04168-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  47. Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 2005;43(2):165–80. https://doi.org/10.1111/j.1365-313X.2005.02440.x.

    Article  CAS  PubMed  Google Scholar 

  48. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003;15(1):165–78. https://doi.org/10.1105/tpc.007468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu HC, Lam SH, Zhang D, Hsiao YY, Li BJ, Niu SC, et al. R2R3-MYB genes coordinate conical cell development and cuticular wax biosynthesis in Phalaenopsis aphrodite. Plant Physiol. 2022;188(1):318–31. https://doi.org/10.1093/plphys/kiab422.

    Article  CAS  PubMed  Google Scholar 

  50. Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, et al. non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J. 2018;93(1):34–49. https://doi.org/10.1111/tpj.13755.

    Article  CAS  PubMed  Google Scholar 

  51. Menna A, Dora S, Sancho-Andrés G, Kashyap A, Meena MK, Sklodowski K, et al. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol. 2021;19(1):1–20. https://doi.org/10.1186/s12915-021-01100-6.

    Article  CAS  Google Scholar 

  52. Mewis K, Lenfant N, Lombard V, Henrissat B. Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl Environ Microbiol. 2016;82(6):1686–92. https://doi.org/10.1128/AEM.03453-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oboulbiga EB, Douamba Z, Compaoré-Sérémé D, Semporé JN, Dabo R, Semde Z, et al. Physicochemical, potential nutritional, antioxidant and health properties of sesame seed oil: a review. Front Nutr. 2023. https://doi.org/10.3389/fnut.2023.1127926.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol. 2005;139(3):1185–93. https://doi.org/10.1104/pp.105.066324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pinheiro TDM, Rego ECS, Alves GSC, Fonseca FCDA, Cotta MG, Antonino JD, et al. Transcriptome profiling of the resistance response of Musa acuminata subsp. burmannicoides, var Calcutta 4 to Pseudocercospora musae. Int J Mol Sci. 2022;23:13589. https://doi.org/10.3390/ijms232113589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quach NT, Ngo CC, Nguyen TH, Nguyen PL, Vu THN, Phan THT, et al. Genome-wide comparison deciphers lifestyle adaptation and glass biodeterioration property of Curvularia eragrostidis C52. Sci Rep. 2022;12(1):1–13. https://doi.org/10.1016/j.ab.2003.07.018.

    Article  CAS  Google Scholar 

  57. Quentin ML, Allasia V, Pegard A, Allais F, Ducrot P-H. Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog. 2009;5:1000264. https://doi.org/10.1371/journal.ppat.1000264.

    Article  CAS  Google Scholar 

  58. Radadiya N, Mangukia N, Antala V, Desai H, Chaudhari H, Dholaria TL, et al. Transcriptome analysis of sesame—Macrophomina phaseolina interactions revealing the distinct genetic components for early defense responses. Physiol Mol Biol Plants. 2021;27(8):1675. https://doi.org/10.1007/s12298-021-01039-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren J, Chen L, Liu J, Zhou B, Sha Y, Hu G, et al. Transcriptomic insights into the molecular mechanism for response of wild emmer wheat to stripe rust fungus. Front Plant Sci. 2023;14:1320976. https://doi.org/10.3389/fpls.2023.1320976.

    Article  PubMed  Google Scholar 

  60. Rocafort M, Fudal I. Apoplastic effector proteins of plant-associated fungi and oomycetes. Curr Opin Plant Biol. 2020. https://doi.org/10.1016/j.pbi.2020.02.004.

    Article  PubMed  Google Scholar 

  61. Rong W, Luo M, Shan T, Wei X, Du L, Xu H, et al. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease. Front Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.01723.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L. CER4 encodes an alcohol-forming fatty Acyl-Coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiol. 2006;142(3):866–77. https://doi.org/10.1104/pp.106.086785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saleh MA, Mahmud S, Albogami S, El-Shehawi AM, Paul GK, Islam S, et al. Biochemical and molecular dynamics study of a novel GH 43 α-l-Arabinofuranosidase/β-Xylosidase from Caldicellulosiruptor saccharolyticus DSM8903. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.810542.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Salleh FM, Evans K, Goodall B, Machin H, Mowla SB, Mur LAJ, et al. A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses. Plant Cell Environ. 2012;35(2):418–29. https://doi.org/10.1111/j.1365-3040.2011.02394.x.

    Article  CAS  PubMed  Google Scholar 

  65. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8. https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  66. Schreiber K, Hassan J. Arabidopsis Abscisic acid repressor 1 is a susceptibility hub that interacts with multiple Pseudomonas syringae effectors. Plant J. 2021;105(5):1274–92. https://doi.org/10.1111/tpj.15110.

    Article  CAS  PubMed  Google Scholar 

  67. Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ. An Arabidopsis GPI-Anchor Plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell. 2009;21(2):581–94. https://doi.org/10.1105/tpc.108.060145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115–e115. https://doi.org/10.1093/nar/gks596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang M, Zhu X, Wang K, Lu C, Luo M, Shan T, et al. A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Sci Rep. 2018;8(1):6543. https://doi.org/10.1038/s41598-018-24884-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wei L, Zhang H, Duan Y, Li C, Chang S, Miao H. Transcriptome comparison of resistant and susceptible sesame (Sesamum indicum L.) varieties inoculated with Fusarium oxysporum f. sp. sesami. Plant Breeding. 2016;135(5):627–35. https://doi.org/10.1111/pbr.12393.

    Article  CAS  Google Scholar 

  71. Wei P, Zhao F, Wang Z, Wang Q, Chai X, Nutrients GH, et al. Sesame (Sesamum indicum L.): a comprehensive review of nutritional value, phytochemical composition, health benefits, development of food. Nutrients. 2022;14(19):4079. https://doi.org/10.3390/nu14194079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei W, Xu L, Peng H, Zhu W, et al. A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-29788-2.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yadav R, Kalia S, Rangan P, Pradheep K, Rao GP, Kaur V, et al. Current research trends and prospects for yield and quality improvement in sesame, an important oilseed crop. Front Plant Sci. 2022;13: 863521. https://doi.org/10.3389/fpls.2022.863521.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yan W, Ni Y, Liu X, Zhao H, Chen Y, Jia M, et al. The mechanism of sesame resistance against Macrophomina phaseolina was revealed via a comparison of transcriptomes of resistant and susceptible sesame genotypes. BMC Plant Biol. 2021;21(1):1–21. https://doi.org/10.1186/s12870-021-02927-5.

    Article  CAS  Google Scholar 

  75. Bin YB, Shang GD, Pan Y, Xu ZG, Zhou CM, Mao YB, et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration. Plant Cell. 2020;32(1):226–41. https://doi.org/10.1105/tpc.19.00378.

    Article  CAS  Google Scholar 

  76. Zhang Y, Zhang J, Zou S, Liu Z, Huang H, Feng C. Genome-wide analysis of the cellulose toolbox of Primulina eburnea, a calcium-rich vegetable. BMC Plant Biol. 2023;23(1):1–14. https://doi.org/10.1186/s12870-023-04266-z.

    Article  CAS  Google Scholar 

  77. Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci U S A. 2018;115(51):13123–8. https://doi.org/10.1073/pnas.1816991115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou L, Ye L, Pang B, Hou Y, Yu J, Du X, et al. Overexpression of ApHIPP26 from the Hyperaccumulator Arabis paniculata confers enhanced cadmium tolerance and accumulation to Arabidopsis thaliana. Int J Mol Sci. 2023;24(20):15052. https://doi.org/10.3390/ijms242015052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol. 2015;207(4):1084–96. https://doi.org/10.1111/nph.13419.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical assistance of Mrs. Kaberi Ghosh, Mr. Jadab Ghosh, and Mr. Swarnava Das, Department of Biological Sciences, BI in a few wet lab experiments.

Funding

GG is funded by Bose Institute, Department of Science and Technology, Government of India. MAN is funded by Council of Scientific & Industrial Research (CSIR) under file number 09/015(0555)/2020-EMR-I. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MAN: Conceptualization, Methodology, Investigation, visualization, Bioinformatic Analysis and interpretation of data, Writing- original draft preparation and editing, Writing- review & editing, Software analysis. GG: Conceptualization, Writing—review & editing, Funds acquisition.

Corresponding author

Correspondence to Gaurab Gangophadhay.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing interest.

Additional information

This article is dedicated to Prof. Arun Kumar Sharma in commemoration of his Birth Centenary.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 154 kb)

Supplementary file2 (DOCX 27 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar, M.A., Gangophadhay, G. Identification and validation of defense related candidate genes in Sesamum under artificial inoculation of Macrophomina phaseolina. Nucleus (2024). https://doi.org/10.1007/s13237-024-00490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-024-00490-6

Keywords

Navigation