Skip to main content

Advertisement

Log in

Gene editing and therapy in acquired and inherited cardiovascular disorders

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Gene editing and therapy holds immense promise in addressing cardiovascular disorders by enabling precise modifications to the genetic groundworks of these conditions. This technology offers a targeted approach to correct or mitigate not only the genetic mutations that are responsible for inherited cardiovascular diseases, such as hypertrophic cardiomyopathy or familial hypercholesterolemia (FH), but also in controlling and regulating the genes in conditions that are age-related or that arise due to unnecessary gene activity, which often lack effective treatments. By editing the relevant genes, we aim to reduce disease severity, improve heart function, prevent future episodes and potentially improve the health span. Recent trials involving gene therapy and gene editing in cardiovascular disorders have revolutionized treatment strategies, offering hope for patients with genetic predispositions to heart and vessel-related ailments and advancing the pursuit for more personalized and effective therapies. In this review, we have consolidated the genetic mutations causing cardiovascular diseases (CVDs) followed by latest advancements in the gene editing technologies and their therapeutic implications along with involved ethical challenges and risk factors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAV:

Adeno associated virus

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas:

CRISPR associated protein

CVDs:

Cardiovascular diseases

iPSC:

Induced pluripotent stem cells

FH:

Familial hypercholesterolemia

PAH:

Pulmonary arterial hypertension

FTAAD:

Familial thoracic aortic aneurysm and dissection

ZFNs:

Zinc-finger nucleases

PAM:

Protospacer adjacent motif

HCM:

Hypertrophic cardiomyopathy

sgRNA:

Single-guide RNA

crRNA:

CRISPR-RNAs

tracrRNA:

trans-activating CrRNA

TALENS:

Transcription activator–like effector nucleases

VSMCs:

Vascular smooth muscle cells

References

  1. Anastasiou M, Oikonomou E, Theofilis P, et al. Prolonged impact of anti-cancer therapy on endothelial function and arterial stiffness in breast cancer patients. Vasc Pharmacol. 2023;152:107195. https://doi.org/10.1016/j.vph.2023.107195.

    Article  CAS  Google Scholar 

  2. Andreassi MG. Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage. Mutat Res Rev Mutat Res. 2003;543:67–86.

    Article  CAS  Google Scholar 

  3. Ballinger SW, Patterson C, Yan C, et al. Mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res. 2000;86:960–7.

    Article  CAS  PubMed  Google Scholar 

  4. Basso C, Corrado D, Rossi L, Thiene G. Ventricular preexcitation in children and young adults: atrial myocarditis as a possible trigger of sudden death. Circulation. 2001;103:269–75. https://doi.org/10.1161/01.CIR.103.2.269.

    Article  CAS  PubMed  Google Scholar 

  5. Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995;95:2266–74. https://doi.org/10.1172/JCI117917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Botto N, Masetti S, Petrozzi L, et al. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coron Artery Dis. 2002;13:269–74. https://doi.org/10.1097/00019501-200208000-00004.

    Article  PubMed  Google Scholar 

  7. Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321:960–4. https://doi.org/10.1126/SCIENCE.1159689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128:388–400. https://doi.org/10.1161/CIRCULATIONAHA.113.001878.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cannatà A, Ali H, Sinagra G, Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ Res. 2020. https://doi.org/10.1161/CIRCRESAHA.120.315855.

    Article  PubMed  Google Scholar 

  10. Cao G, Xuan X, Zhang R, et al. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med. 2021;8:760140. https://doi.org/10.3389/FCVM.2021.760140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. 2013;97:571–9. https://doi.org/10.1093/cvr/cvs352.

    Article  CAS  PubMed  Google Scholar 

  12. Cui M, Wang Z, Bassel-Duby R, Olson EN. Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development. 2018. https://doi.org/10.1242/DEV.171983.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Devetzi M, Goulielmaki M, Khoury N, et al. Genetically-modified stem cells in treatment of human diseases: tissue kallikrein (KLK1)-based targeted therapy (Review). Int J Mol Med. 2018;41:1177–86. https://doi.org/10.3892/IJMM.2018.3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92. https://doi.org/10.1161/CIRCRESAHA.115.304351/-/DC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doetschman T, Azhar M. Cardiac-specific inducible and conditional gene targeting in mice. Circ Res. 2012;110:1498–512. https://doi.org/10.1161/CIRCRESAHA.112.265066.

    Article  CAS  PubMed  Google Scholar 

  16. Dorsheimer L, Assmus B, Rasper T, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4:32. https://doi.org/10.1001/JAMACARDIO.2018.3965.

    Article  Google Scholar 

  17. Evans MA, Sano S, Walsh K. Cardiovascular disease, aging, and clonal hematopoiesis. Annu Rev Pathol. 2019. https://doi.org/10.1146/annurev-pathmechdis.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flouris GA, Arvanitis DA, Parissis JT, et al. Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques. Mol Cell Biol Res Commun. 2001;4:62–5. https://doi.org/10.1006/mcbr.2000.0255.

    Article  CAS  Google Scholar 

  19. Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143(5):729–40. https://doi.org/10.1242/dev.132910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31:822–6. https://doi.org/10.1038/nbt.2623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012. https://doi.org/10.1073/PNAS.1208507109/-/DCSUPPLEMENTAL/PNAS.201208507SI.PDF.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. https://doi.org/10.1056/NEJMOA1409405.

    Article  PubMed  PubMed Central  Google Scholar 

  23. German DM, Mitalipov S, Mishra A, Kaul S. Therapeutic genome editing in cardiovascular diseases. JACC Basic Transl Sci. 2019;4:122–31. https://doi.org/10.1016/j.jacbts.2018.11.004.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:6072–8. https://doi.org/10.1002/cncr.27633.Percutaneous.

    Article  Google Scholar 

  25. Gollob MH, Green MS, Tang AS-L, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344:1823–31. https://doi.org/10.1056/NEJM200106143442403.

    Article  CAS  PubMed  Google Scholar 

  26. Gollob MH, Green MS, Tang ASL, Roberts R. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol. 2002;17:229–34. https://doi.org/10.1097/00001573-200205000-00004.

    Article  PubMed  Google Scholar 

  27. Gong J, Zhou D, Jiang L, et al. In vitro lineage-specific differentiation of vascular smooth muscle cells in response to SMAD3 deficiency: implications for SMAD3-related thoracic aortic aneurysm. Arterioscler Thromb Vasc Biol. 2020;40:1651–63. https://doi.org/10.1161/ATVBAHA.120.313033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gray K, Kumar S, Figg N, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res. 2014;116(5):816–26. https://doi.org/10.1161/CIRCRESAHA.116.304921.

    Article  CAS  PubMed  Google Scholar 

  29. Grossman M, Rader DJ, Muller DWM, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med. 1995;111(1):1148–54. https://doi.org/10.1038/nm1195-1148.

    Article  Google Scholar 

  30. Gwathmey JK, Yerevanian A, Hajjar RJ. Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol. 2010;50(5):803–12. https://doi.org/10.1016/j.yjmcc.2010.11.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halcox JPJ. Endothelial dysfunction. Prim Auton Nerv Syst. 2012;12:319–24. https://doi.org/10.1016/B978-0-12-386525-0.00066-4.

    Article  Google Scholar 

  32. Hall AE, Burton H. Legal and ethical implications of inherited cardiac disease in clinical practice within the UK. J Med Ethics. 2010;36:762–6. https://doi.org/10.1136/jme.2009.034108.

    Article  PubMed  Google Scholar 

  33. Hatzistamou J, Kiaris H, Ergazaki M, Spandidos DA. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun. 1996;225:186–90. https://doi.org/10.1006/bbrc.1996.1151.

    Article  CAS  PubMed  Google Scholar 

  34. Hennig SL, Owen JR, Lin JC, et al. Evaluation of mutation rates, mosaicism and off target mutations when injecting Cas9 mRNA or protein for genome editing of bovine embryos. Sci Rep. 2020;10(1):22309. https://doi.org/10.1038/s41598-020-78264-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Higo T, Naito AT, Sumida T, et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun. 2017;8:1–13. https://doi.org/10.1038/ncomms15104.

    Article  Google Scholar 

  36. How to respond to CRISPR babies. Nature. 2018;564:5. https://doi.org/10.1038/d41586-018-07634-0

  37. Huang Y, Hong H, Li M, et al. Age-dependent oxidative DNA damage does not correlate with reduced proliferation of cardiomyocytes in humans. PLoS ONE. 2017;12(1):1–13. https://doi.org/10.1371/journal.pone.0170351.

    Article  CAS  Google Scholar 

  38. Ishikawa K, Weber T, Hajjar RJ. Human cardiac gene therapy. Circ Res. 2018;123:601–13. https://doi.org/10.1161/CIRCRESAHA.118.311587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;26:2488–98. https://doi.org/10.1056/NEJMoa1408617.

    Article  CAS  Google Scholar 

  40. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21. https://doi.org/10.1056/NEJMOA1701719.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jean D, Peter G. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27–32. https://doi.org/10.1161/01.CIR.0000131515.03336.f8.

    Article  CAS  Google Scholar 

  42. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29. https://doi.org/10.1146/ANNUREV-BIOPHYS-062215-010822.

    Article  CAS  PubMed  Google Scholar 

  43. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21. https://doi.org/10.1126/SCIENCE.1225829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khan M, Völkers M, Wende AR. Editorial: metabolic regulation of cardiac and vascular cell function: physiological and pathophysiological implications. Front Physiol. 2022;13: 849869. https://doi.org/10.3389/FPHYS.2022.849869.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Khouzam JPS, Tivakaran VS. CRISPR-Cas9 applications in cardiovascular disease. Curr Probl Cardiol. 2021;46: 100652. https://doi.org/10.1016/J.CPCARDIOL.2020.100652.

    Article  PubMed  Google Scholar 

  46. Kim SW, Lee DW, Yu LH, et al. Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res. 2012;95:495–506. https://doi.org/10.1093/CVR/CVS224.

    Article  CAS  PubMed  Google Scholar 

  47. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–9. https://doi.org/10.1126/SCIENCE.AAT5011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kurose I, Wolf R, Cerwinka W, Granger DN. Microvascular responses to ischemia/reperfusion in normotensive and hypertensive rats. Hypertension. 1999;34:212–6. https://doi.org/10.1161/01.HYP.34.2.212.

    Article  CAS  PubMed  Google Scholar 

  49. Landis BJ, Veldtman GR, Ware SM. Genotype-phenotype correlations in Marfan syndrome. Heart. 2017;103:1750–2. https://doi.org/10.1136/heartjnl-2017-311513.

    Article  PubMed  Google Scholar 

  50. Lewandoski M. Conditional control of gene expression in the mouse. Nature Rev Genet. 2002;2(10):743–55.

    Article  Google Scholar 

  51. Li ZH, Wang J, Xu JP, et al. (2023) Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res. 2023;101(10):1–20. https://doi.org/10.1186/S40779-023-00447-X.

    Article  Google Scholar 

  52. Li Q, Zhang A, Tao C, et al. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro. Biochem Biophys Res Commun. 2013;441:675–80. https://doi.org/10.1016/J.BBRC.2013.10.071.

    Article  CAS  PubMed  Google Scholar 

  53. Liu N, Olson EN. CRISPR modeling and correction of cardiovascular disease. Circ Res. 2022;130:1827–50. https://doi.org/10.1161/CIRCRESAHA.122.320496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lloyd-Jones DM, Nam BH, D’Agostino RB, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA. 2004;291:2204–11. https://doi.org/10.1001/JAMA.291.18.2204.

    Article  CAS  PubMed  Google Scholar 

  55. Long C, Li H, Tiburcy M, et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv. 2018. https://doi.org/10.1126/SCIADV.AAP9004/SUPPL_FILE/AAP9004_SM.PDF.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Long L, Ormiston ML, Yang X, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21:777–85. https://doi.org/10.1038/nm.3877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51. https://doi.org/10.1056/NEJM198610233151702.

    Article  CAS  PubMed  Google Scholar 

  58. Luo R, Lu Y, Liu J, et al. Enhancement of the efficacy of mesenchymal stem cells in the treatment of ischemic diseases. Biomed Pharmacother. 2019;109:2022–34. https://doi.org/10.1016/J.BIOPHA.2018.11.068.

    Article  CAS  PubMed  Google Scholar 

  59. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9. https://doi.org/10.1038/nature23305.

    Article  CAS  PubMed  Google Scholar 

  60. Machado RD, Aldred MA, James V, et al. Mutations of the TGF-β type II receptorBMPR2 in pulmonary arterial hypertension. Hum Mutat. 2006;27:121–32. https://doi.org/10.1002/humu.20285.

    Article  CAS  PubMed  Google Scholar 

  61. Mao Z, Hine C, Tian X, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443–6. https://doi.org/10.1126/science.1202723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martinet W, Knaapen MWM, De Meyer GRY, et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106:927–32. https://doi.org/10.1161/01.CIR.0000026393.47805.21.

    Article  CAS  PubMed  Google Scholar 

  63. Matthews C, Gorenne I, Scott S, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res. 2006;99:156–64. https://doi.org/10.1161/01.RES.0000233315.38086.bc.

    Article  CAS  PubMed  Google Scholar 

  64. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29:464–88. https://doi.org/10.1016/J.YMTHE.2020.12.007.

    Article  CAS  PubMed  Google Scholar 

  65. Mensah GA, Moran AE, Roth GA, Narula J. The global burden of cardiovascular diseases, 1990–2010. Glob Heart. 2014;9:183–4. https://doi.org/10.1016/j.gheart.2014.01.008.

    Article  PubMed  Google Scholar 

  66. Mercer J, Mahmoudi M, Bennett M. DNA damage, p53, apoptosis and vascular disease. Mutat Res Fundam Mol Mech Mutagen. 2007;621:75–86. https://doi.org/10.1016/j.mrfmmm.2007.02.011.

    Article  CAS  Google Scholar 

  67. Moore OM, Ho KS, Copeland JS, et al. Genome editing and cardiac arrhythmias. Cells. 2023. https://doi.org/10.3390/cells12101363.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Motta BM, Pramstaller PP, Hicks AA, Rossini A. The impact of CRISPR/Cas9 technology on cardiac research: from disease modelling to therapeutic approaches. Stem Cells Int. 2017. https://doi.org/10.1155/2017/8960236.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Musunuru K, Chadwick AC, Mizoguchi T, et al. (2021) In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;5937859(593):429–34. https://doi.org/10.1038/s41586-021-03534-y.

    Article  CAS  Google Scholar 

  70. Naim C, Yerevanian A, Hajjar RJ. Gene therapy for heart failure: Where do we stand? Curr Cardiol Rep. 2013;15:1–10. https://doi.org/10.1007/s11886-012-0333-3.

    Article  Google Scholar 

  71. Nakada Y, Nhi Nguyen NU, Xiao F, et al. DNA damage response mediates pressure overload-induced cardiomyocyte hypertrophy. Circulation. 2019;139:1237–9. https://doi.org/10.1161/CIRCULATIONAHA.118.034822.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nakamura Y, Kita S, Tanaka Y, et al. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol Ther. 2020;28:2203–19. https://doi.org/10.1016/j.ymthe.2020.06.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. National Academies of Sciences, Engineering, and Medicine. Human genome editing: science, ethics, and governance. Washington: The National Academies Press; 2017. https://doi.org/10.17226/24623.

    Book  Google Scholar 

  74. Octavia Y, Tocchetti CG, Gabrielson KL, et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–25. https://doi.org/10.1016/j.yjmcc.2012.03.006.

    Article  CAS  PubMed  Google Scholar 

  75. Olson EN. Toward the correction of muscular dystrophy by gene editing. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/PNAS.2004840117.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Van Der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014;12:479–92. https://doi.org/10.1038/NRMICRO3279.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ormond KE, Borensztein MJ, Hallquist MLG, et al. Defining the critical components of informed consent for genetic testing. J Pers Med. 2021. https://doi.org/10.3390/jpm11121304.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pan X, Philippen L, Lahiri SK, et al. In Vivo Ryr2 editing corrects catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2018;123:953–63. https://doi.org/10.1161/CIRCRESAHA.118.313369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paquette M, Baass A. A novel cause of familial hypercholesterolemia: PCSK9 gene duplication. Can J Cardiol. 2018;34:1259–60. https://doi.org/10.1016/j.cjca.2018.08.027.

    Article  PubMed  Google Scholar 

  80. Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014;157:565–79. https://doi.org/10.1016/j.cell.2014.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reiner AP, Bhattacharya R, Zekavat SM, et al. Clonal hematopoiesis is associated with higher risk of stroke. Stroke. 2022;53:788–97. https://doi.org/10.1161/STROKEAHA.121.037388.

    Article  CAS  PubMed  Google Scholar 

  82. Renard M, Francis C, Ghosh R, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2018;72:605–15. https://doi.org/10.1016/j.jacc.2018.04.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–9. https://doi.org/10.1038/362801a0.

    Article  CAS  PubMed  Google Scholar 

  84. Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14:8096–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Satoh M, Ishikawa Y, Takahashi Y, et al. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis. 2008;198:347–53. https://doi.org/10.1016/j.atherosclerosis.2007.09.040.

    Article  CAS  PubMed  Google Scholar 

  86. Schreurs J, Sacchetto C, Colpaert RMW, et al. Recent advances in crispr/cas9-based genome editing tools for cardiac diseases. Int J Mol Sci. 2021;22:10985. https://doi.org/10.3390/ijms222010985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shah A, Gray K, Figg N, et al. Defective base excision repair of oxidative DNA damage in vascular smooth muscle cells promotes atherosclerosis. Circulation. 2018;138:1446–62. https://doi.org/10.1161/CIRCULATIONAHA.117.033249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shukla PC, Singh KK, Yanagawa B, et al. DNA damage repair and cardiovascular diseases. Can J Cardiol. 2010;26:13A-16A. https://doi.org/10.1016/S0828-282X(10)71055-2.

    Article  CAS  PubMed  Google Scholar 

  89. Tian W, Jiang X, Sung YK, et al. Phenotypically silent bone morphogenetic protein receptor 2 mutations predispose rats to inflammation-induced pulmonary arterial hypertension by enhancing the risk for neointimal transformation. Circulation. 2019;140:1409–25. https://doi.org/10.1161/CIRCULATIONAHA.119.040629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9 technology: applications and human disease modelling. Brief Funct Genomics. 2017;16:4–12. https://doi.org/10.1093/BFGP/ELW025.

    Article  CAS  PubMed  Google Scholar 

  91. Touyz RM. Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep. 2000;2(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  92. Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol. 2019;15(7):373–86.

    Article  PubMed  Google Scholar 

  93. Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell. 2020;181:136–50. https://doi.org/10.1016/J.CELL.2020.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wenzel P, Schuhmacher S, Kienhöfer J, et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res. 2008;80:280–9. https://doi.org/10.1093/cvr/cvn182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wolf CM. Hypertrophic cardiomyopathy: genetics and clinical perspectives. Cardiovasc Diagn Ther. 2019;9:S388. https://doi.org/10.21037/CDT.2019.02.01.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Xie C, Zhang YP, Song L, Luo J, Qi W, Hu J, Lu D, Yang Z, Zhang J, Xiao J, Zhou B, Du JL. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res. 2016;26(10):1099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu S, Yin M, Koroleva M, et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging (Albany NY). 2016;8:1064–82. https://doi.org/10.18632/aging.100975.

    Article  CAS  PubMed  Google Scholar 

  98. Zeng Y, Li J, Li G, et al. Correction of the marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther. 2018;26:2631–7. https://doi.org/10.1016/J.YMTHE.2018.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang Y, Li H, Min YL, et al. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv. 2020;6:6812. https://doi.org/10.1126/SCIADV.AAY6812/SUPPL_FILE/AAY6812_SM.PDF.

    Article  Google Scholar 

  100. Zhao H, Li Y, He L, et al. In vivo AAV-CRISPR/Cas9–mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia. Circulation. 2020;141:67–79. https://doi.org/10.1161/CIRCULATIONAHA.119.042476.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

DS, RC, PS, and DG—wrote the manuscript. PCS—ideation and finalization of the manuscript.

Corresponding author

Correspondence to Praphulla Chandra Shukla.

Ethics declarations

Conflict of interest

Financial interests: RC and SD received no financial support for this work. Non-financial interests: The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Nishant Chakravorty; Reviewers: Syamantak Majumder, Amit Kumar Pandey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duddu, S., Chakrabarti, R., Sharma, P. et al. Gene editing and therapy in acquired and inherited cardiovascular disorders. Nucleus 67, 237–250 (2024). https://doi.org/10.1007/s13237-024-00480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-024-00480-8

Keywords

Navigation