Skip to main content

Advertisement

Log in

Role of chromatin modulation in the establishment of protozoan parasite infection for developing targeted chemotherapeutics

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Four major human infecting protozoan parasites (Plasmodium, Toxoplasma, Leishmania, and Trypanosoma) impose a substantial threat to health and socio-economic status causing significant morbidity and mortality in tropics and subtropics each year. Lack of effective drugs, the emergence of drug-resistance, and toxicity have made the existing treatment regimen insufficient for most of these parasitic infections ranging from acutely lethal to chronic to almost asymptomatic. These pathogens have developed intricate life-cycle stages altering between multiple hosts and initiating a network of developmental processes in response to environmental stimulus for differentiating within the host without evoking host protective immune surveillance. These differentiation events and successful intracellular survival events require drastic and rapid modulation of the parasites and parasite-driven host gene expression which is achieved by substantial chromatin modifications. Histone posttranslational modifications have a marked effect on chromatin structure organization allowing these pathogens to cope with multiple host survival. In this review, we have described the advancements made in interpreting the role of histone modifications and their impact on gene expression throughout the life-cycle stages of these pathogens. Moreover, we have analyzed available genome-wide transcriptomics datasets for each of these pathogens to identify those parasite-specific histone-modifiers which show a preferential expression in human infective stages, with a perspective of anti-parasitic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data presented in this review will be made available as per journal policy.

Code availability

All the codes used for analyzing genome-wide transcriptomics data are deposited in GitHub 24 (https://github.com/S1403-pi/Histone-modifiers-of-protozoan-parasites.git).

References

  1. Adl SM, Leander BS, Simpson AG, Archibald JM, Anderson OR, Bass D, et al. Diversity, nomenclature, and taxonomy of protists. Syst Biol. 2007;56(4):684–9.

    Article  PubMed  Google Scholar 

  2. Alcolea PJ, Alonso A, Gomez MJ, Moreno I, Dominguez M, Parro V, et al. Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage. Int J Parasitol. 2010;40(13):1497–516.

    Article  CAS  PubMed  Google Scholar 

  3. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.

    Article  CAS  PubMed  Google Scholar 

  4. Alsford S, Horn D. Trypanosomatid histones. Mol Microbiol. 2004;53(2):365–72.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson BA, Wong IL, Baugh L, Ramasamy G, Myler PJ, Beverley SM. Kinetoplastid-specific histone variant functions are conserved in Leishmania major. Mol Biochem Parasitol. 2013;191(2):53–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ataide MA, Andrade WA, Zamboni DS, Wang D, Souza Mdo C, Franklin BS, et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014;10(1):e1003885.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Belli SI. Chromatin remodelling during the life cycle of trypanosomatids. Int J Parasitol. 2000;30(6):679–87.

    Article  CAS  PubMed  Google Scholar 

  8. Bougdour A, Braun L, Cannella D, Hakimi MA. Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. Cell Microbiol. 2010;12(4):413–23.

    Article  CAS  PubMed  Google Scholar 

  9. Bougdour A, Maubon D, Baldacci P, Ortet P, Bastien O, Bouillon A, et al. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J Exp Med. 2009;206(4):953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calderwood MS, Gannoun-Zaki L, Wellems TE, Deitsch KW. Plasmodium falciparum var genes are regulated by two regions with separate promoters, one upstream of the coding region and a second within the intron. J Biol Chem. 2003;278(36):34125–32.

    Article  CAS  PubMed  Google Scholar 

  11. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993;57(4):953–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaal BK, Gupta AP, Wastuwidyaningtyas BD, Luah YH, Bozdech Z. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLoS Pathog. 2010;6(1):e1000737.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chandra U, Yadav A, Kumar D, Saha S. Cell cycle stage-specific transcriptional activation of cyclins mediated by HAT2-dependent H4K10 acetylation of promoters in Leishmania donovani. PLoS Pathog. 2017;13(9):e1006615.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9(6):190072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cock-Rada AM, Medjkane S, Janski N, Yousfi N, Perichon M, Chaussepied M, et al. SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Can Res. 2012;72(3):810–20.

    Article  CAS  Google Scholar 

  16. Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov. 2009;8(9):724–32.

    Article  CAS  PubMed  Google Scholar 

  17. Croken MM, Nardelli SC, Kim K. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol. 2012;28(5):202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cui L, Miao J, Furuya T, Li X, Su XZ, Cui L. PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell. 2007;6(7):1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. da Cunha JP, Nakayasu ES, de Almeida IC, Schenkman S. Post-translational modifications of Trypanosoma cruzi histone H4. Mol Biochem Parasitol. 2006;150(2):268–77.

    Article  PubMed  Google Scholar 

  20. de Jesus TC, Nunes VS, Lopes Mde C, Martil DE, Iwai LK, Moretti NS, et al. Chromatin proteomics reveals variable histone modifications during the life cycle of Trypanosoma cruzi. J Proteome Res. 2016;15(6):2039–51.

    Article  PubMed  Google Scholar 

  21. de Lima LP, Poubel SB, Yuan ZF, Roson JN, Vitorino FNL, Holetz FB, et al. Improvements on the quantitative analysis of Trypanosoma cruzi histone post translational modifications: study of changes in epigenetic marks through the parasite’s metacyclogenesis and life cycle. J Proteomics. 2020;225:103847.

    Article  PubMed  Google Scholar 

  22. Deshmukh AS, Srivastava S, Dhar SK. Plasmodium falciparum: epigenetic control of var gene regulation and disease. Subcell Biochem. 2013;61:659–82.

    Article  CAS  PubMed  Google Scholar 

  23. DiPaolo C, Kieft R, Cross M, Sabatini R. Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. Mol Cell. 2005;17(3):441–51.

    Article  CAS  PubMed  Google Scholar 

  24. Divangahi M, Aaby P, Khader SA, Barreiro LB, Bekkering S, Chavakis T, et al. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol. 2021;22(1):2–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doerig C, Rayner JC, Scherf A, Tobin AB. Post-translational protein modifications in malaria parasites. Nat Rev Microbiol. 2015;13(3):160–72.

    Article  CAS  PubMed  Google Scholar 

  26. Duraisingh MT, Horn D. Epigenetic regulation of virulence gene expression in parasitic protozoa. Cell Host Microbe. 2016;19(5):629–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dzikowski R, Deitsch KW. Genetics of antigenic variation in Plasmodium falciparum. Curr Genet. 2009;55(2):103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engel JA, Jones AJ, Avery VM, Sumanadasa SD, Ng SS, Fairlie DP, et al. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. Int J Parasitol Drugs Drug Resist. 2015;5(3):117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW. Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA. 2009;15(1):116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Figueiredo LM, Freitas-Junior LH, Bottius E, Olivo-Marin JC, Scherf A. A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation. EMBO J. 2002;21(4):815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM, Alako BT, et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog. 2009;5(9):e1000569.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Petre G, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. mBio. 2019;10(4).

  33. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.

    Article  CAS  PubMed  Google Scholar 

  34. Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V, Bertini RL, et al. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-gamma-mediated host defenses. J Exp Med. 2016;213(9):1779–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guegan F, Bento F, Neves D, Sequeira M, Notredame C, Figueiredo LM. A long non-coding RNA controls parasite differentiation in African trypanosomes. bioRxiv. 2020.

  36. Gupta AP, Zhu L, Tripathi J, Kucharski M, Patra A, Bozdech Z. Histone 4 lysine 8 acetylation regulates proliferation and host-pathogen interaction in Plasmodium falciparum. Epigenetics Chromatin. 2017;10(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hollin T, Gupta M, Lenz T, Le Roch KG. Dynamic chromatin structure and epigenetics control the fate of malaria parasites. Trends Genetics TIG. 2021;37(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  38. Horn D. Introducing histone modification in trypanosomes. Trends Parasitol. 2007;23(6):239–42.

    Article  CAS  PubMed  Google Scholar 

  39. Horn D, Cross GA. A developmentally regulated position effect at a telomeric locus in Trypanosoma brucei. Cell. 1995;83(4):555–61.

    Article  CAS  PubMed  Google Scholar 

  40. Horn D, Cross GA. Position-dependent and promoter-specific regulation of gene expression in Trypanosoma brucei. EMBO J. 1997;16(24):7422–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M, et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8(7):e2865.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hotez PJ, Pecoul B. “Manifesto” for advancing the control and elimination of neglected tropical diseases. PLoS Negl Trop Dis. 2010;4(5):e718.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jing Q, Cao L, Zhang L, Cheng X, Gilbert N, Dai X, et al. Plasmodium falciparum var gene is activated by its antisense long noncoding RNA. Front Microbiol. 2018;9:3117.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15.

    Article  CAS  PubMed  Google Scholar 

  45. Koprinarova M, Botev P, Russev G. Histone deacetylase inhibitor sodium butyrate enhances cellular radiosensitivity by inhibiting both DNA nonhomologous end joining and homologous recombination. DNA Repair. 2011;10(9):970–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kristeleit R, Stimson L, Workman P, Aherne W. Histone modification enzymes: novel targets for cancer drugs. Expert Opin Emerg Drugs. 2004;9(1):135–54.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar D, Saha S. HAT3-mediated acetylation of PCNA precedes PCNA monoubiquitination following exposure to UV radiation in Leishmania donovani. Nucleic Acids Res. 2015;43(11):5423–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003;301(5639):1503–8.

    Article  PubMed  Google Scholar 

  49. Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P, Aulner N, et al. Targeting macrophage histone H3 modification as a leishmania strategy to dampen the NF-kappaB/NLRP3-mediated inflammatory response. Cell Rep. 2020;30(6):1870-82.e4.

    Article  CAS  PubMed  Google Scholar 

  50. Leng J, Denkers EY. Toxoplasma gondii inhibits covalent modification of histone H3 at the IL-10 promoter in infected macrophages. PLoS ONE. 2009;4(10):e7589.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lerm M, Holm A, Seiron A, Sarndahl E, Magnusson KE, Rasmusson B. Leishmania donovani requires functional Cdc42 and Rac1 to prevent phagosomal maturation. Infect Immun. 2006;74(5):2613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lopez-Rubio JJ, Gontijo AM, Nunes MC, Issar N, Hernandez Rivas R, Scherf A. 5’ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol. 2007;66(6):1296–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lopez-Rubio JJ, Mancio-Silva L, Scherf A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe. 2009;5(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  54. Lopez-Rubio JJ, Riviere L, Scherf A. Shared epigenetic mechanisms control virulence factors in protozoan parasites. Curr Opin Microbiol. 2007;10(6):560–8.

    Article  CAS  PubMed  Google Scholar 

  55. Mancio-Silva L, Rojas-Meza AP, Vargas M, Scherf A, Hernandez-Rivas R. Differential association of Orc1 and Sir2 proteins to telomeric domains in Plasmodium falciparum. J Cell Sci. 2008;121(Pt 12):2046–53.

    Article  CAS  PubMed  Google Scholar 

  56. Mandava V, Fernandez JP, Deng H, Janzen CJ, Hake SB, Cross GA. Histone modifications in Trypanosoma brucei. Mol Biochem Parasitol. 2007;156(1):41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marr AK, MacIsaac JL, Jiang R, Airo AM, Kobor MS, McMaster WR. Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages. PLoS Pathog. 2014;10(10):e1004419.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Matta SK, Olias P, Huang Z, Wang Q, Park E, Yokoyama WM, et al. Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection. Proc Natl Acad Sci USA. 2019;116(35):17480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miao J, Fan Q, Cui L, Li J, Li J, Cui L. The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene. 2006;369:53–65.

    Article  CAS  PubMed  Google Scholar 

  60. Miao J, Fan Q, Cui L, Li X, Wang H, Ning G, et al. The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol Microbiol. 2010;78(4):883–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mukherjee B, Mukhopadhyay R, Bannerjee B, Chowdhury S, Mukherjee S, Naskar K, et al. Antimony-resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. Proc Natl Acad Sci USA. 2013;110(7):E575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Naiyer S, Bhattacharya A, Bhattacharya S. Advances in entamoeba histolytica biology through transcriptomic analysis. Front Microbiol. 2019;10:1921.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nardelli SC, Che FY, Silmon de Monerri NC, Xiao H, Nieves E, Madrid-Aliste C, et al. The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. mBio. 2013;4(6):e00922-13.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nardelli SC, da Cunha JP, Motta MC, Schenkman S. Distinct acetylation of Trypanosoma cruzi histone H4 during cell cycle, parasite differentiation, and after DNA damage. Chromosoma. 2009;118(4):487–99.

    Article  CAS  PubMed  Google Scholar 

  65. Nast R, Choepak T, Luder CGK. Epigenetic control of IFN-gamma host responses during infection with Toxoplasma gondii. Front Immunol. 2020;11:581241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nawaz M, Malik I, Hameed M, Hussain Kuthu Z, Zhou J. Modifications of histones in parasites as drug targets. Vet Parasitol. 2020;278:109029.

    Article  CAS  PubMed  Google Scholar 

  67. Ngwa CJ, Kiesow MJ, Orchard LM, Farrukh A, Llinas M, Pradel G. The G9a histone methyltransferase inhibitor BIX-01294 modulates gene expression during Plasmodium falciparum gametocyte development and transmission. Int J Mol Sci. 2019;20(20).

  68. Nie LB, Liang QL, Elsheikha HM, Du R, Zhu XQ, Li FC. Global profiling of lysine 2-hydroxyisobutyrylome in Toxoplasma gondii using affinity purification mass spectrometry. Parasitol Res. 2020;119(12):4061–71.

    Article  PubMed  Google Scholar 

  69. Noll TM, Desponds C, Belli SI, Glaser TA, Fasel NJ. Histone H1 expression varies during the Leishmania major life cycle. Mol Biochem Parasitol. 1997;84(2):215–27.

    Article  CAS  PubMed  Google Scholar 

  70. Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-gamma-dependent gene expression. Cell Host Microbe. 2016;20(1):72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olinski R, Starczak M, Gackowski D. Enigmatic 5-hydroxymethyluracil: oxidatively modified base, epigenetic mark or both? Mutat Res Rev Mutat Res. 2016;767:59–66.

    Article  CAS  PubMed  Google Scholar 

  72. Panneerselvam P, Bawankar P, Kulkarni S, Patankar S. In silico prediction of evolutionarily conserved GC-Rich elements associated with antigenic proteins of Plasmodium falciparum. Evol Bioinform. 2011;7:235–55.

    Article  CAS  Google Scholar 

  73. Patil V, Lescault PJ, Lirussi D, Thompson AB, Matrajt M. Disruption of the expression of a non-coding RNA significantly impairs cellular differentiation in Toxoplasma gondii. Int J Mol Sci. 2012;14(1):611–24.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Perez-Toledo K, Rojas-Meza AP, Mancio-Silva L, Hernandez-Cuevas NA, Delgadillo DM, Vargas M, et al. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res. 2009;37(8):2596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J, Ralph SA, et al. Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog. 2011;7(2):e1001292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Read DF, Cook K, Lu YY, Le Roch KG, Noble WS. Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features. PLoS Comput Biol. 2019;15(9):e1007329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rider SD Jr, Zhu G. Cryptosporidium: genomic and biochemical features. Exp Parasitol. 2010;124(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  78. Robert McMaster W, Morrison CJ, Kobor MS. Epigenetics: a new model for intracellular parasite-host cell regulation. Trends Parasitol. 2016;32(7):515–21.

    Article  CAS  PubMed  Google Scholar 

  79. Roger T, Lugrin J, Le Roy D, Goy G, Mombelli M, Koessler T, et al. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood. 2011;117(4):1205–17.

    Article  CAS  PubMed  Google Scholar 

  80. Roy G, Brar HK, Muthuswami R, Madhubala R. Epigenetic regulation of defense genes by histone deacetylase1 in human cell line-derived macrophages promotes intracellular survival of Leishmania donovani. PLoS Negl Trop Dis. 2020;14(4):e0008167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saha S. Histone modifications and other facets of epigenetic regulation in trypanosomatids: leaving their mark. mBio. 2020;11(5).

  82. Saksouk N, Bhatti MM, Kieffer S, Smith AT, Musset K, Garin J, et al. Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol. 2005;25(23):10301–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salcedo-Amaya AM, van Driel MA, Alako BT, Trelle MB, van den Elzen AM, Cohen AM, et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA. 2009;106(24):9655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sautel CF, Cannella D, Bastien O, Kieffer S, Aldebert D, Garin J, et al. SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol. 2007;27(16):5711–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol. 2008;62:445–70.

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt CQ, Kennedy AT, Tham WH. More than just immune evasion: hijacking complement by Plasmodium falciparum. Mol Immunol. 2015;67(1):71–84.

    Article  CAS  PubMed  Google Scholar 

  87. Schrum JE, Crabtree JN, Dobbs KR, Kiritsy MC, Reed GW, Gazzinelli RT, et al. Cutting edge: Plasmodium falciparum induces trained innate immunity. J Immunol. 2018;200(4):1243–8.

    Article  CAS  PubMed  Google Scholar 

  88. Sindikubwabo F, Ding S, Hussain T, Ortet P, Barakat M, Baumgarten S, et al. Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. eLife. 2017;6.

  89. Singh U, Ehrenkaufer GM. Recent insights into Entamoeba development: identification of transcriptional networks associated with stage conversion. Int J Parasitol. 2009;39(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  90. Sonda S, Morf L, Bottova I, Baetschmann H, Rehrauer H, Caflisch A, et al. Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol. 2010;76(1):48–67.

    Article  CAS  PubMed  Google Scholar 

  91. Soto M, Quijada L, Alonso C, Requena JM. Molecular cloning and analysis of expression of the Leishmania infantum histone H4 genes. Mol Biochem Parasitol. 1997;90(2):439–47.

    Article  CAS  PubMed  Google Scholar 

  92. Soto M, Requena JM, Quijada L, Alonso C. Organization, transcription and regulation of the Leishmania infantum histone H3 genes. Biochem J. 1996;318(Pt 3):813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sullivan WJ Jr, Naguleswaran A, Angel SO. Histones and histone modifications in protozoan parasites. Cell Microbiol. 2006;8(12):1850–61.

    Article  CAS  PubMed  Google Scholar 

  94. Swapna LS, Parkinson J. Genomics of apicomplexan parasites. Crit Rev Biochem Mol Biol. 2017;52(3):254–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ukaegbu UE, Kishore SP, Kwiatkowski DL, Pandarinath C, Dahan-Pasternak N, Dzikowski R, et al. Recruitment of PfSET2 by RNA polymerase II to variant antigen encoding loci contributes to antigenic variation in P. falciparum. PLoS Pathog. 2014;10(1):e1003854.

    Article  PubMed  PubMed Central  Google Scholar 

  97. van Luenen HG, Farris C, Jan S, Genest PA, Tripathi P, Velds A, et al. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell. 2012;150(5):909–21.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vanagas L, Jeffers V, Bogado SS, Dalmasso MC, Sullivan WJ Jr, Angel SO. Toxoplasma histone acetylation remodelers as novel drug targets. Expert Rev Anti Infect Ther. 2012;10(10):1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vanheer LN, Kafsack BFC. Activity comparison of epigenetic modulators against the hemoprotozoan parasites babesia divergens and Plasmodium falciparum. ACS Infect Dis. 2021.

  100. Vembar SS, Scherf A, Siegel TN. Noncoding RNAs as emerging regulators of Plasmodium falciparum virulence gene expression. Curr Opin Microbiol. 2014;20:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Villares M, Berthelet J, Weitzman JB. The clever strategies used by intracellular parasites to hijack host gene expression. Semin Immunopathol. 2020;42(2):215–26.

    Article  CAS  PubMed  Google Scholar 

  102. Vizuet-de-Rueda JC, Florencio-Martinez LE, Padilla-Mejia NE, Manning-Cela R, Hernandez-Rivas R, Martinez-Calvillo S. Ribosomal RNA genes in the protozoan parasite leishmania major possess a nucleosomal structure. Protist. 2016;167(2):121–35.

    Article  CAS  PubMed  Google Scholar 

  103. Walk J, Keramati F, de Bree LCJ, Arts RJW, Blok B, Netea MG, et al. Controlled human malaria infection induces long-term functional changes in monocytes. Front Mol Biosci. 2020;7:604553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wigle TJ. Promoting illiteracy in epigenetics: an emerging therapeutic strategy. Curr Chem Genomics. 2011;5(Suppl 1):48–50.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yadav A, Chandra U, Saha S. Histone acetyltransferase HAT4 modulates navigation across G2/M and re-entry into G1 in Leishmania donovani. Sci Rep. 2016;6:27510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yin D, Jiang N, Zhang Y, Wang D, Sang X, Feng Y, et al. Global lysine crotonylation and 2-hydroxyisobutyrylation in phenotypically different Toxoplasma gondii parasites. Mol Cell Proteomics MCP. 2019;18(11):2207–24.

    Article  CAS  PubMed  Google Scholar 

  107. Yu Z, Genest PA, ter Riet B, Sweeney K, DiPaolo C, Kieft R, et al. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Nucleic Acids Res. 2007;35(7):2107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang Q, Cao X. Epigenetic regulation of the innate immune response to infection. Nat Rev Immunol. 2019;19(7):417–32.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang Q, Siegel TN, Martins RM, Wang F, Cao J, Gao Q, et al. Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria. Nature. 2014;513(7518):431–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge School of Medical Science and Technology, Indian Institute of Technology, Kharagpur for providing all the infrastructure facilities required for this publication.

Funding

SG is a recipient of IIT-KGP GATE fellowship, S is a recipient of CSIR-NET fellowship. BM 14 lab is funded by SERB and MHRD.

Author information

Authors and Affiliations

Authors

Contributions

SG participated in preparing the original draft, performed the transcriptome analysis, data preparation, preparing figures, and editing the MS. S participated in preparing the original draft, prepared the figures, and editing the MS. SH performed transcriptome analysis and data preparation. HM participated in preparing and editing the original draft. BM performed supervision, conceptualization, data analyzing, original draft preparation, review, and editing.

Corresponding author

Correspondence to Budhaditya Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that the review was conducted without any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Somnath Paul; Reviewers: Jonathan B Weitzman, Maumita Bhaumik, Arijit Bhattacharya.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 3553 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Snehlata, Hussain, S. et al. Role of chromatin modulation in the establishment of protozoan parasite infection for developing targeted chemotherapeutics. Nucleus 64, 401–413 (2021). https://doi.org/10.1007/s13237-021-00356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-021-00356-1

Keywords

Navigation