Omics for proso millet genetic improvement

Abstract

Proso millet (Panicum miliaceum L.) is one of the seven commonly cultivated millets. It is regarded as a climate-smart, ancient, and gluten-free and therefore, is healthy to humans and the environment. The exceptional nutritional properties of the grain resulted in a gradual surge in its demand in the human food market especially for people with diabetes and celiac disease. It is essential to continue the genetic improvement of proso millet to meet its ever-increasing demand. Genetic improvement of proso millet in the United States, however, is impeded by the narrow genetic base in the germplasm and lack of extensive research on its genetics and breeding. There are lots of reports on ‘omics’ (genomics, transcriptomics, proteomics, metabolomics, and phenomics) of many common crops and the technologies are being extensively used in their genetic improvement. However, such studies are scarce in proso millet. The objective of this review article is to summarize available ‘omics’ reports of proso millet and discuss their relevance for its genetic improvement. Relatively more genomics and transcriptomics reports of proso millet are available but only two proteomics and metabolomics reports focusing on grain composition and no phenomics report are available. As more efficient, fast, and cheaper ‘omics’ technologies are available, it is imperative that global proso and other millets breeders and geneticists collaborate strongly for successful utilization of ‘milletomics’ for developing of noble proso millet varieties for future need of this climate-smart superfood grain.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Agdag M, Nelson L, Baltensperger D, Lyon D, Kachman S. Row spacing affects grain yield and other agronomic characters of proso millet. Commun Soil Sci Plant Anal. 2001;32:2021–32.

    CAS  Google Scholar 

  2. 2.

    Antony Ceasar S, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, et al. Finger millet [Eleusine coracana (L.) Gaertn.] improvement: Current status and future interventions of whole genome sequence. Front Plant Sci. 2018;9.

  3. 3.

    Anup CP, Melvin P, Shilpa N, Gandhi MN, Jadhav M, Ali H, et al. Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. J Proteomics. 2015;120:58–74. https://doi.org/10.1016/j.jprot.2015.02.013.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Anup CP, Kini KR. Analysis of dynamics of proteome in resistant cultivar of pearl millet seedlings during Sclerospora graminicola infection. J Appl Biol Biotechnol. 2016;4:67–71.

    CAS  Google Scholar 

  5. 5.

    Aydin G. Genome analysis of plants. In: Hakeem KR, Tombuloğlu H, Tombuloğlu G, editors. Plant omics: trends and applications. Springer: Cham; 2016. p. 1–27.

    Google Scholar 

  6. 6.

    Barkla BJ, Castellanos-Cervantes T, Diaz de León JL, Matros A, Mock HP, Perez-Alfocea F, et al. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics-Current achievements and perspectives. Proteomics. 2013;13:1885–900.

    CAS  PubMed  Google Scholar 

  7. 7.

    Boyles RE, Brenton ZW, Kresovich S. Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Plant J. 2019;97:19–39.

    CAS  PubMed  Google Scholar 

  8. 8.

    Budzinski IGF, Regiani T, Labate MTV, Guidetti-Gonzalez S, da Silva DI, Rodrigues MJC, et al. Proteomics. In: Borém A, Fritsche-Neto R, editors. Omics in Plant Breeding. John Wiley & Sons, Inc, New York; 2014. pp. 59–79.

  9. 9.

    Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M. Plant proteome analysis. Proteomics. 2004;4:285–98.

    PubMed  Google Scholar 

  10. 10.

    Cho Y Il, Chung JW, Lee GA, Ma KH, Dixit A, Gwag JG, et al. Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicum miliaceumL.). Genes and Genomics. 2010;32:267–73.

    CAS  Google Scholar 

  11. 11.

    Das S, Khound R, Santra M, Santra DK. Beyond bird feed: Proso millet for human health and environment. Agric. 2019;9. https://doi.org/10.3390/agriculture9030064

  12. 12.

    de Oliveira AC, da Maia LC, Farias DR, Marini N. Genomics. In: Borém A, Fritsche-Neto R, editors. Omics in Plant Breeding. Wiley, New York; 2014. pp. 13–31.

  13. 13.

    Diola V, de Daloso DM, Antunes WC. Metabolomics. In: Borém A, Fritsche-Neto R, editors. Omics in Plant Breeding. Wiley, New York; 2014. pp. 1–11.

  14. 14.

    Dudhate A, Shinde H, Tsugama D, Liu S, Takano T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [pennisetum glaucum (l.) r. Br]. PLoS ONE. 2018;13:1–14.

    Google Scholar 

  15. 15.

    Fritsche-Neto R, Borém A. Omics: Opening up the "black box" of the phenotype. In: Borém A, Fritsche-Neto R, editors. Omics in Plant Breeding. Wiley, New York; 2014. pp. 1–11.

  16. 16.

    Gedil M, Menkir A. An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa. Front Plant Sci. 2019;10:1–17.

    Google Scholar 

  17. 17.

    Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front Plant Sci. 2015;6. https://doi.org/10.3389/fpls.2015.00157

  18. 18.

    Graybosch RA, Baltensperger DD. Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum). Plant Breed. 2009;128:70–3.

    CAS  Google Scholar 

  19. 19.

    Gygi SP, Rochon Y, Franza BR, Aebersold R. Mb001720. Mol Cell Biol. 1999;19:1720–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J, Ganjyal GM, Whiteman MR, Kidwell KK, et al. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, U.S.: A review. Front Plant Sci. 2017;7:1–17.

    Google Scholar 

  21. 21.

    Henry WB, Nielsen DC, Vigil MF, Calderón FJ, West MS. Proso millet yield and residue mass following direct harvest with a stripper-header. Agron J. 2008;100:580–4.

    Google Scholar 

  22. 22.

    Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, Aruna YR, et al. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics. 2017;18:1–16.

    Google Scholar 

  23. 23.

    Hou S, Sun Z, Li Y, Wang Y, Ling H, Xing G, et al. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet ( Panicum miliaceum; Poaceae). Appl Plant Sci. 2017;5:1600137.

    Google Scholar 

  24. 24.

    Hu X, Wang J, Lu P, Zhang H. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J Genet Genomics. 2009;36:491–500. https://doi.org/10.1016/S1673-8527(08)60139-3

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Hunt HV, Campana MG, Lawes MC, Park YJ, Bower MA, Howe CJ, et al. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol. 2011;20:4756–71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK, Heslop-Harrison JSP. Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn milletP miliaceum. J Exp Bot. 2014;65:3165–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Jaiswal V, Gupta S, Gahlaut V, Muthamilarasan M, Bandyopadhyay T, Ramchiary N, et al. Genome-Wide Association Study of Major Agronomic Traits in Foxtail Millet (Setaria italica L.) Using ddRAD Sequencing. Sci Rep. 2019;9:1–11.

  28. 28.

    Jayakodi M, Madheswaran M, Adhimoolam K, Perumal S, Manickam D, Kandasamy T, et al. Transcriptomes of Indian barnyard millet and barnyardgrass reveal putative genes involved in drought adaptation and micronutrient accumulation. Acta Physiol Plant. 2019;41. https://doi.org/10.1007/s11738-019-2855-4

  29. 29.

    Johnson M, Deshpande S, Vetriventhan M, Upadhyaya HD, Wallace JG. Genome-wide population structure analyses of three minor millets: Kodo Millet, Little Millet, and Proso Millet. Plant Genome. 2019;12:190021. https://doi.org/10.3835/plantgenome2019.03.0021.

    CAS  Article  Google Scholar 

  30. 30.

    Kalinova J, Moudry J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr. 2006;61:45–9.

    CAS  PubMed  Google Scholar 

  31. 31.

    Kim JK, Park SY, Yeo Y, Cho HS, Kim YB, Bae H, et al. Metabolic profiling of millet (Panicum miliaceum) using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) for quality assessment. Plant Omics. 2013;6:73–8.

    CAS  Google Scholar 

  32. 32.

    Kulkarni KS, Zala HN, Bosamia TC, Shukla YM, Kumar S, Fougat RS, et al. De novo transcriptome sequencing to dissect candidate genes associated with pearl millet-downy mildew (sclerospora graminicola sacc.) interaction. Front Plant Sci. 2016;7:1–16.

    CAS  Google Scholar 

  33. 33.

    Lata C. Advances in omics for enhancing abiotic stress tolerance in millets. Proc Indian Natl Sci Acad. 2015;81:397–417.

    Google Scholar 

  34. 34.

    Li S, Dong X, Fan G, Yang Q, Shi J, Wei W, et al. Comprehensive profiling and inheritance patterns of metabolites in foxtail millet. Front Plant Sci. 2018;871:1–16.

    Google Scholar 

  35. 35.

    Li X, Siddique KHM. Future smart food- Rediscovering hiddent treasures of neglected and underutilized species for zero hunger in Asia. Bangkok: FAO; 2018.

    Google Scholar 

  36. 36.

    Liang K, Liang S, Lu L, Zhu D, Zhu H, Liu P, et al. Metabolic variation and cooking qualities of millet cultivars grown both organically and conventionally. Food Res Int. 2018;106:825–33. https://doi.org/10.1016/j.foodres.2018.01.023.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Liang K, Liang S, Zhu H. Comparative proteomics analysis of the effect of selenium treatment on the quality of foxtail millet. Lwt. 2020;131:109691. https://doi.org/10.1016/j.lwt.2020.109691.

    CAS  Article  Google Scholar 

  38. 38.

    Liang Z, Gupta SK, Yeh CT, Zhang Y, Ngu DW, Kumar R, et al. Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 Genes, Genomes, Genet. 2018;8:2513–22.

  39. 39.

    Liu M, Xu Y, He J, Zhang S, Wang Y, Wang Y, et al. Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. Int J Mol Sci. 2016;17:1–18.

    CAS  Google Scholar 

  40. 40.

    Lu H, Zhang J, Liu KB, Wu N, Li Y, Zhou K, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci U S A. 2009;106:7367–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lyon DJ, Baltensperger DD. Proso millet (Panicum miliaceum) tolerance to several postemergence herbicides. Weed Tech. 1993;7:230–3.

    CAS  Google Scholar 

  42. 42.

    Lyon D, Burgener P, DeBoer K, Harveson R, Hein G, Hergert G, Producing, and Marketing Proso millet in the Great Plains., et al. Publication # EC137. Lincoln, NB: Univ of Nebraska Ext Serv; 2008.

  43. 43.

    McSweeney MB, Seetharaman K, Ramdath DD, Duizer LM. Chemical and physical characteristics of proso millet (Panicum miliaceum)-based products. Cereal Chem. 2017;94:357–62.

    CAS  Google Scholar 

  44. 44.

    Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip. 2018;32:261–85.

    CAS  Google Scholar 

  45. 45.

    Nielsen DC, Unger PW, Miller PR. Efficient water use in dryland cropping systems in the Great Plains. Agron J. 2005;97:364–72.

    Google Scholar 

  46. 46.

    Pan J, Li Z, Wang Q, Garrell AK, Liu M, Guan Y, et al. Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol. 2018;18:1–19.

    CAS  Google Scholar 

  47. 47.

    Pandian S, Ramesh M. Decoding of finger millet genome: a milestone of millet genomics. Sign Transduct Insights. 2019;8:117864341882054. https://doi.org/10.1177/1178643418820541.

    Article  Google Scholar 

  48. 48.

    Parvathi MS, Nataraja KN, Reddy YAN, Naika MBN, Gowda MVC. Transcriptome analysis of finger millet (Eleusine coracana (L.) Gaertn.) reveals unique drought responsive genes. J Genet. 2019;98:1–12. https://doi.org/10.1007/s12041-019-1087-0

    CAS  Article  Google Scholar 

  49. 49.

    Rajput SG, Plyler-Harveson T, Santra DK. Development and characterization of SSR markers in proso millet based on Switchgrass genomics Am J Plant Sci. 2014;05:175–86.

    CAS  Google Scholar 

  50. 50.

    Rajput SG, Santra DK. Evaluation of genetic diversity of proso millet germplasm available in the united states using simple-sequence repeat markers. Crop Sci. 2016;56:2401–9.

    CAS  Google Scholar 

  51. 51.

    Rajput SG, Santra DK, Schnable J. Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). 2016;36. org/https://doi.org/10.1007/s11032-016-0460-4

  52. 52.

    Reddy DS, Bhatnagar-Mathur P, Vadez V, Sharma KK. Grain legumes (Soybean, Chickpea, and Peanut): omics approaches to enhance abiotic stress tolerance. Improv Crop Resist Abiotic Stress. 2012;2:995–1032.

    CAS  Google Scholar 

  53. 53.

    Reddy VG, Upadhyaya HD, Gowda CLL. Morphological characterization of world’s proso millet germplasm collection. J SAT Agric Res. 2007;3:1–4.

    Google Scholar 

  54. 54.

    Rodrigues CM, Mafra VS, Machado. Transcriptomics. In: Borém A, Fritsche-Neto R, editors. Omics in Plant Breeding. Wiley, New York; 2014. pp. 33–57.

  55. 55.

    Roy SK, Kwon S-J, Yu J-H, Sarker K, Cho S-W, Moon Y-J, et al. Comparison of Protein Profiles of Proso Millet (Panicum miliaceum) Seeds of various Korean. Korean J Crop Sci. 2017;62:40–50.

  56. 56.

    Santra DK, Khound R, Das S. Proso millet (Panicum miliaceum L.) breeding: Progress, challenges and opportunities. In: Al-Khayri, Jain SM, Johnson DV, editors. Adv Plant Breed Strateg Cereal. Springer Nature, Heidelberg; 2019. 5:223–57.

  57. 57.

    Sen S, Kundu S, Dutta SK. Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet. Plant Physiol Biochem Elsevier Masson SAS. 2016;108:79–89. https://doi.org/10.1016/j.plaphy.2016.05.033.

    CAS  Article  Google Scholar 

  58. 58.

    Shabir G, Aslam K, Khan AR, Shahid M, Manzoor H, Noreen S, et al. Rice molecular markers and genetic mapping: current status and prospects. J Integr Agric. 2017;16:1879–91. https://doi.org/10.1016/S2095-3119(16)61591-5

    CAS  Article  Google Scholar 

  59. 59.

    Shevchenko A, Yang Y, Knaust A, Thomas H, Jiang H, Lu E, et al. Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J Proteomics. 2014;105:363–71. https://doi.org/10.1016/j.jprot.2013.11.016.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, et al. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). PeerJ. 2018;2018.

  61. 61.

    Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, et al. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot. 2018;155:619–27. https://doi.org/10.1016/j.envexpbot.2018.07.008.

    CAS  Article  Google Scholar 

  62. 62.

    Srivastava RK, Singh RB, Pujarula VL, Bollam S, Pusuluri M, Chellapilla TS, et al. Genome-wide association studies and genomic selection in pearl millet: advances and prospects. Front Genet. 2020;10:1–10.

    CAS  Google Scholar 

  63. 63.

    Sumner LW, Mendes P, Dixon RA. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003;62:817–36.

    CAS  PubMed  Google Scholar 

  64. 64.

    Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol. 2017;35:969–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Chandra Obul Reddy P, Surabhi GK, Sriranganayakulu G, et al. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci. 2008;175:631–41.

    CAS  Google Scholar 

  66. 66.

    Vetriventhan M, Upadhyaya HD. Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J. 2018;6:451–63.

    Google Scholar 

  67. 67.

    Wang J, Zhang G, Liu X, Quan Z, Cheng S, Xu X, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol. 2012;30:549–54.

    CAS  PubMed  Google Scholar 

  68. 68.

    Wang R, Wang H, Liu X, Ji X, Chen L, Lu P, et al. Waxy allelic diversity in common millet (Panicum miliaceum L.) in China. Crop J. 2018;6:377–85.

    Google Scholar 

  69. 69.

    Weng Q, Song X, Zhao Y, Yuan J, Dong Z, Zhao Z, et al. Proteomic profiling of foxtail millet hybrid Zhangzagu10 and its parent lines using iTRAQ-based technique. J Plant Biochem Biotechnol. 2020;2. https://doi.org/10.1007/s13562-020-00551-2

  70. 70.

    Xia W, Luo T, Zhang W, Mason AS, Huang D, Huang X, et al. Development of high-density snp markers and their application in evaluating genetic diversity and population structure in elaeis guineensis. Front Plant Sci. 2019;10:1–11.

    Google Scholar 

  71. 71.

    Xu B qin, Gao X li, GaoJ feng, Li J, Yang P, Feng B li. Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000. J Integr Agric. CAAS. 2019;18:2457–71. https://doi.org/10.1016/S2095-3119(19)62576-1

  72. 72.

    Yue H, Wang M, Liu S, Du X, Song W, Nie X. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.). BMC Genomics.2016;17:1–11. https://doi.org/10.1186/s12864-016-2677-3

    CAS  Article  Google Scholar 

  73. 73.

    Zhang Y, Gao X, Li J, Gong X, Yang P, Gao J, et al. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC Plant Biol. 2019;19:1–17.

    Google Scholar 

  74. 74.

    Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, et al. The genome of broomcorn millet. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-08409-5

    CAS  Article  Google Scholar 

Download references

Funding

The project was supported by ‘Research State Aided’ internal funds: 21-6243-1001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Santra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor : Manoj Prasad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khound, R., Santra, D.K. Omics for proso millet genetic improvement. Nucleus 63, 241–247 (2020). https://doi.org/10.1007/s13237-020-00339-8

Download citation

Keywords

  • Ancient grain
  • Climate-smart
  • Omics
  • Small millet
  • Genetic improvement
  • Underutilized crops