Skip to main content

Advertisement

Log in

Cancer stem cell fate determination: a nuclear phenomenon

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) are a subset of cells within the tumor bulk, with a potential to undergo self-renewal, differentiation, proliferation and metastasis. Cumulative evidences suggest that mainly CSCs are responsible for tumor recurrences and resistance towards chemo- and radiotherapy. Unlike non-stem cancer cells, CSCs can undergo self-renewal and differentiation through asymmetric cell division (ACD) similar to normal stem cells. Asymmetric division results in two daughter cells: a structural and functional copy of the mother cell (CSC) and another one destined to undergo differentiation, non-cancer stem cell. Apart from the involvement of various polarity-determining factors, transcription factors and epigenetic regulators, micro-RNAs also play a crucial role in cell-fate decision making. Eventually, two daughter cells with distinct fates are produced with an unequal inheritance of differentiation-linked fate determinants, centrosomes and other stemness associated factors. Violation of the mechanisms leading to ACD will compromise the generation of both new CSCs and progenitor cells within the tumor. Thus, manipulation of asymmetric division of CSCs may introduce new strategies for dual targeting of CSCs and the tumor bulk. In this review, we discuss how CSCs play a critical role in almost all the events of tumorigenesis. Apart from that, we also delineate how these CSCs exploit the phenomenon of ACD during cancer relapses or tumor recurrences to regenerate the entire tumor. Therefore, in a nutshell this review highlights the therapeutic relevance of CSCs for successful elimination of cancer and suggests a novel improvisation in CSC-targeting by perturbing its ACD mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen TD, Rodriguez EM, Jones KD, Bishop JM. Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Res. 2011;71(18):6010–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Almonacid M, Terret M-E, Verlhac M-H. Nuclear positioning as an integrator of cell fate. Curr Opin Cell Biol. 2019;56:122–9.

    Article  CAS  PubMed  Google Scholar 

  4. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ballas N, Mandel G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol. 2005;15:500–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. 2013;14(14):25.

    PubMed  Google Scholar 

  7. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.

    Article  CAS  PubMed  Google Scholar 

  8. Berika M, Elgayyar ME, El-Hashash AH. Asymmetric cell division of stem cells in the lung and other systems. Front Cell Dev Biol. 2014;2:33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013;12(5):602–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bu P, Chen KY, Lipkin SM, Shen X. Asymmetric division: a marker for cancer stem cells in early stage tumors? Oncotarget. 2013;4(7):950–1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bu P, Wang L, Chen KY, et al. A miR-34a-numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer. Cell Stem Cell. 2016;18(2):189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer Facts & Figures 2018 | American Cancer Society [Internet]. [cited 2019 Mar 25]. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html.

  13. Capaccione KM, Pine SR. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis. 2013;34(7):1420–3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caussinus E, Gonzalez C. Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet. 2005;37:1125–9.

    Article  CAS  PubMed  Google Scholar 

  15. Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016;95:S20–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol. 2018;51:149–59.

    Article  CAS  PubMed  Google Scholar 

  18. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009;138(6):1083–9510.

    Article  CAS  PubMed  Google Scholar 

  19. Collet G, El Hafny-Rahbi B, Nadim M, Tejchman A, Klimkiewicz K, Kieda C. Hypoxia-shaped vascular niche for cancer stem cells. Contemp Oncol. 2015;19(1A):A39–43.

    Google Scholar 

  20. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13(8B):2236–52.

    Article  PubMed  Google Scholar 

  21. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36(6):1021–34.

    Article  CAS  PubMed  Google Scholar 

  22. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005;65(10):4320–33.

    Article  CAS  PubMed  Google Scholar 

  23. Gómez-López S, Lerner RG, Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci. 2013;71(4):575–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  25. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010;102(5):789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25(2):254–6410.

    Article  CAS  PubMed  Google Scholar 

  27. Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y, et al. Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep. 2010;24(2):501–5.

    Article  CAS  PubMed  Google Scholar 

  28. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu C, Li H, Li J, Zhu Z, Yin S, Hao X, et al. Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis. 2008;29(12):2289–97.

    Article  CAS  PubMed  Google Scholar 

  30. Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16(3):268–80.

    Article  CAS  PubMed  Google Scholar 

  31. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108(4):1397–402.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Insinga A, Cicalese A, Faretta M, et al. DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions. Proc Natl Acad Sci U S A. 2013;110(10):3931–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Izumi H, Kaneko Y. Symmetry breaking in human neuroblastoma cells. Mol Cell Oncol. 2014;1(4):e968510.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  35. Jin B, Wang W, Meng XX, et al. Let-7 inhibits self-renewal of hepatocellular cancer stem-like cells through regulating the epithelial-mesenchymal transition and the Wnt signaling pathway. BMC Cancer. 2016;16(1):863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimble JE, White JG. On the control of germ cell development in Caenorhabditis elegans. Dev Biol. 1981;81(2):208–19.

    Article  CAS  PubMed  Google Scholar 

  38. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 2004;18:559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knoblich JA. Mechanisms of asymmetric stem cell division. Cell. 2008;132(4):583–9710.

    Article  CAS  PubMed  Google Scholar 

  40. Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Development. 2013;140(4):689–70410.

    Article  CAS  PubMed  Google Scholar 

  41. Kucherenko MM, Barth J, Fiala A, Shcherbata HR. Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain: Temporal miRNA let-7 controls neuronal cell fate. EMBO J. 2012;31:4511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. La Porta CA. Thoughts about cancer stem cells in solid tumors. World J Stem Cells. 2012;4(3):17–20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  CAS  PubMed  Google Scholar 

  44. Lark KG. Discovering non-random segregation of sister chromatids: the naïve treatment of a premature discovery. Front Oncol. 2013;2:211.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437(7056):275–80.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee CY, Andersen RO, Cabernard C, Manning L, Tran KD, Lanskey MJ, et al. Drosophila aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 2006;20(24):3464–7410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee C-Y, Robinson KJ, Doe CQ. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature. 2006;439:594–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lerner RG, Petritsch C. A microRNA-operated switch of asymmetric-to-symmetric cancer stem cell divisions. Nat Cell Biol. 2014;16(3):212–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li C, Liu S, Yan R, Han N, Wong K-K, Li L. CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer. Theranostics. 2017;7(1):67–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li S, Li Q. Cancer stem cells and tumor metastasis. Int J Oncol. 2014;44(6):1806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li X, Barkho BZ, Luo Y, Smrt RD, Santistevan NJ, Liu C, et al. Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem. 2008;283:27644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Licciulli S, Avila JL, Hanlon L, Troutman S, Cesaroni M, Kota S, et al. Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Res. 2013;43:5974–8410.

    Article  CAS  Google Scholar 

  53. Liu C, Liu L, Chen X, Cheng J, Zhang H, Shen J, et al. Sox9 regulates self-renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma. Hepatology. 2016;64(1):117–29.

    Article  CAS  PubMed  Google Scholar 

  54. Merok JR, Lansita JA, Tunstead JR, Sherley JL. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Res. 2002;62(23):6791–5.

    CAS  PubMed  Google Scholar 

  55. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441:1068–74.

    Article  CAS  PubMed  Google Scholar 

  56. Mukherjee S, Kong J, Brat DJ. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev. 2015;24(4):405–16.

    Article  PubMed  Google Scholar 

  57. Mukherjee S, Manna A, Bhattacharjee P, Mazumdar M, Saha S, Chakraborty S, et al. Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR58(+) migrating cancer stem cells. Oncogene. 2016;35(37):4937–48.

    Article  CAS  PubMed  Google Scholar 

  58. Namihira M, Kohyama J, Abematsu M, Nakashima K. Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci. 2008;363:2099–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nobili S, Landini I, Giglioni B, Mini E. Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets. 2006;7(7):861–79.

    Article  CAS  PubMed  Google Scholar 

  60. Pine SR, Liu W. Asymmetric cell division and template DNA co-segregation in cancer stem cells. Front Oncol. 2014;4:226.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pine SR, Ryan BM, Varticovski L, Robles AI, Harris CC. Microenvironmental modulation of asymmetric cell division in human lung cancer cells. Proc Natl Acad Sci U S A. 2010;107(5):2195–200.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Piskounova E, Polytarchou C, Thornton JE, et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147(5):1066–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Radisky DC, LaBarge MA. Epithelial–mesenchymal transition and the stem cell phenotype. Cell Stem Cell. 2008;2(6):511–2.

    Article  CAS  PubMed  Google Scholar 

  65. Rambhatla L, Ram-Mohan S, Cheng JJ, Sherley JL. Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells. Cancer Res. 2005;65(8):3155–6110.

    Article  CAS  PubMed  Google Scholar 

  66. Rasheed ZA, Matsui W. Biological and clinical relevance of stem cells in pancreatic adenocarcinoma. J Gastroenterol Hepatol. 2012;27(Suppl 2):15–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP. Atypical protein kinase Ciota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem. 2005;280:31109–15.

    Article  CAS  PubMed  Google Scholar 

  68. Rose L, Gönczy P. Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook; 2014. p. 1–43.

  69. Saha S, Mukherjee S, Khan P, Kajal K, Mazumdar M, Manna A, et al. Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NFκB–IL6 signaling axis responsible for the generation of cancer stem cells. Cancer Res. 2016;76(7):2000–12.

    Article  CAS  PubMed  Google Scholar 

  70. Santoro A, Vlachou T, Carminati M, Pelicci PG, Mapelli M. Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep. 2016;17(12):1700–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Santoro A, Vlachou T, Luzi L, et al. p53 loss in breast cancer leads to Myc activation, increased cell plasticity, and expression of a mitotic signature with prognostic value. Cell Rep. 2019;26(3):624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schatton T, Frank NY, Frank MH. Identification and targeting of cancer stem cells. BioEssays News Rev Mol Cell Dev Biol. 2009;31(10):1038–49.

    Article  CAS  Google Scholar 

  73. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al. Identification of cells initiating human melanomas. Nature. 2008;451(7176):345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, et al. CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res BCR. 2006;8(5):R59.

    Article  CAS  PubMed  Google Scholar 

  75. Shervington A, Lu C. Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest. 2008;26(5):535–42.

    Article  CAS  PubMed  Google Scholar 

  76. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shigeta J, Katayama K, Mitsuhashi J, Noguchi K, Sugimoto Y. BCRP/ABCG2 confers anticancer drug resistance without covalent dimerization. Cancer Sci. 2010;101(8):1813–21.

    Article  CAS  PubMed  Google Scholar 

  78. Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, et al. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development. 2012;139(14):2488–9910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shimono Y, Mukohyama J, Nakamura S, Minami H. MicroRNA regulation of human breast cancer stem cells. J Clin Med. 2015;5(1):2.

    Article  CAS  PubMed Central  Google Scholar 

  80. Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS. Cancer stem cells and their role in metastasis. Pharmacol Ther. 2013;138(2):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shyh-Chang N, Daley GQ. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 2013;12(4):395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Siller KH, Doe CQ. Spindle orientation during asymmetric cell division. Nat Cell Biol. 2009;11(4):365–7410.

    Article  CAS  PubMed  Google Scholar 

  83. Suraneni MV, Badeaux MD. Tumor-initiating cells, cancer metastasis and therapeutic implications. Landes Biosci. 2013 [cited 2018 Oct 11].

  84. Takahashi RU, Miyazaki H, Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Front Genet. 2014;4:295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1(4):389–402.

    Article  CAS  PubMed  Google Scholar 

  86. Wakamatsu Y, Sakamoto N, Oo HZ, Naito Y, Uraoka N, Anami K, et al. Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int. 2012;62(2):112–9.

    Article  PubMed  Google Scholar 

  87. Wang L, Bu P, Ai Y, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. Elife. 2016;5:e14620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Q-Z, Lu Y-H, Jiang N, Diao Y, Xu R-A. The asymmetric division and tumorigenesis of stem cells. Chin J Cancer. 2010;29:248–53.

    Article  PubMed  Google Scholar 

  89. Cai W-Y, Wei T-Z, Luo Q-C, Qiu-Wan W, Liu Q-F, Yang M, Ye G-D, Jia-Fa W, Chen Y-Y, Sun G-B, Liu Y-J, Zhao W-X, Zhang Z-M, Li B-A. The Wnt–β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013;126:2877–89.

    Article  CAS  PubMed  Google Scholar 

  90. Weinhold B. Epigenetics: the science of change. Environ Health Perspect. 2006;114(3):A160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xin HW, Ambe CM, Ray S, Kim BK, Koizumi T, Wiegand GW, et al. Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division. J Cancer. 2013;4(6):447–5710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamashita YM, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science. 2003;301:1547–50.

    Article  CAS  PubMed  Google Scholar 

  93. Yao X-H, Ping Y-F, Chen J-H, Xu C-P, Chen D-L, Zhang R, et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR. J Pathol. 2008;215(4):369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ye X, Weinberg RA. Epithelial–mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 2015;25(11):675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, Yao Y, Li D. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16(1):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants from Council of Scientific and Industrial Research (CSIR), University Grants Commission (UGC), Department of Biotechnology (DBT) and Department of Science and Technology (DST), Government of India. We are also thankful to the Director, Bose Institute for providing all infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Dutta, A., Basak, U. et al. Cancer stem cell fate determination: a nuclear phenomenon. Nucleus 62, 109–118 (2019). https://doi.org/10.1007/s13237-019-00281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00281-4

Keywords

Navigation