The Nucleus

pp 1–8 | Cite as

Genotoxicity analysis of rutile titanium dioxide nanoparticles in mice after 28 days of repeated oral administration

  • J. Manivannan
  • Ritesh Banerjee
  • Anita MukherjeeEmail author
Original Article


Titanium dioxide (TiO2) or titania has demonstrated excellent potential for commercial use in various arenas, such as in the paint, in pharmaceuticals and food industry. However information on the genotoxic potential of rutile form of TiO2-NP after repeated (28 days) low dose oral exposure in major organs of the reticuloendothelial system (liver, spleen, bone marrow, lymph nodes) is not known. In this study Swiss albino male mice were gavaged TiO2-NP at sub-acute concentration (0.2, 0.4 and 0.8 mg/kg body weight) over a period of 28 days. Results revealed that TiO2-NP administered was of rutile form with mean average size of 25 nm by transmission electron microscopy. The values of PDI and Zeta potential from DLS of TiO2-NP in suspension specified that the nanomaterial was stable without much agglomeration. Chromosomal aberration assay showed that TiO2-NP was genotoxic and cytotoxic. DNA damage evaluation by comet assay confirmed that long term exposure to TiO2-NP at low concentrations can induce genotoxicity systemically in organs, such as liver, spleen, and thymus cells. Structural chromosomal aberration test from bone marrow cells revealed the clastogenicity of TiO2-NP at sub chronic low concentrations. Further in vivo studies are needed to elucidate the underlying mechanisms at the molecular level.


Clastogenicity Comet assay DNA damage Genotoxicity Rutile titania Swiss albino mice 



J. Manivannan would like to acknowledge the University Grants Commission for financial assistance in the form of Research Fellowship under the Basic Scientific Research scheme (Sanction No. F.5- 21/2007dt 12.03.2014). For instrumentation facilities the authors would like to acknowledge UGC-Center for Research in Nano Science, University of Calcutta.


  1. 1.
    Aueviriyavit S, Phummiratch D, Kulthong K, Maniratanachote R. Titanium dioxide nanoparticles-mediated in vitro cytotoxicity does not induce Hsp70 and Grp78 expression in human bronchial epithelial A549 cells. Biol Trace Elem Res. 2012;149:123–32.CrossRefPubMedGoogle Scholar
  2. 2.
    Bernard BK, Osheroff MR, Hofmann A, Mennear JH. Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Environ Health. 1990;29:417–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Cabellos J, Delpivo C, Fernández-Rosas E, Vázquez-Campos S, Janer G. Contribution of M-cells and other experimental variables in the translocation of TiO2 nanoparticles across in vitro intestinal models. NanoImpact. 2017;5:51–60.CrossRefGoogle Scholar
  4. 4.
    Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC, Chen HW, Su SF, Chien CT. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J. 2006;20:2393–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen T, Yan J, Li Y. Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal. 2014;22:95–104.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen H, Zhao R, Wang B, Cai C, Zheng L, Wang H, Wang M, Ouyang H, Zhou X, Chai Z, Zhao Y. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact. 2017;8:80–8.CrossRefGoogle Scholar
  7. 7.
    Chen Z, Wang Y, Ba T, Li Y, Pu J, Chen T, Song Y, Gu Y, Qian Q, Yang J, Jia G. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett. 2014;226:314–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Chong MN, Jin B, Chow CW, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44:2997–3027.CrossRefPubMedGoogle Scholar
  9. 9.
    Donner EM, Myhre A, Brown SC, Boatman R, Warheit DB. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats. RegulToxicolPharmacol. 2016;74:64–74.Google Scholar
  10. 10.
    Dorier M, Béal D, Marie-Desvergne C, Dubosson M, Barreau F, Houdeau E, Herlin-Boime N, Carriere M. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology. 2017;11:751–61.PubMedGoogle Scholar
  11. 11.
    EFSA. Re-evaluation of titanium dioxide (E 171) as a food additive. 2016;
  12. 12.
    El Yamani N, Collins AR, Rundén-Pran E, Fjellsbø LM, Shaposhnikov S, Zienolddiny S, Dusinska M. In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis. 2016;32:117–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere. 2010;81:1253–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Ghosh M, Manivannan J, Sinha S, Chakraborty A, Mallick SK, Bandyopadhyay M, Mukherjee A. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res, Genet Toxicol Environ Mutagen. 2012;749:60–9.CrossRefGoogle Scholar
  15. 15.
    Grissa I, Elghoul J, Ezzi L, Chakroun S, Kerkeni E, Hassine M, El Mir L, Mehdi M, Cheikh HB, Haouas Z. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutat Res, Genet Toxicol Environ Mutagen. 2015;794:25–31.CrossRefGoogle Scholar
  16. 16.
    Guichard Y, Schmit J, Darne C, Gaté L, Goutet M, Rousset D, Rastoix O, Wrobel R, Witschger O, Martin A, Fierro V. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg. 2012;56:631–44.PubMedGoogle Scholar
  17. 17.
    Guo Z, Martucci NJ, Moreno-Olivas F, Tako E, Mahler GJ. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine. NanoImpact. 2017;5:70–82.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hackenberg S, Friehs G, Froelich K, Ginzkey C, Koehler C, Scherzed A, Burghartz M, Hagen R, Kleinsasser N. Intracellular distribution, geno-and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol Lett. 2010;195:9–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Hamzeh M, Sunahara GI. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol Vitro. 2013;27:864–73.CrossRefGoogle Scholar
  20. 20.
    Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Howarter JA, Youngblood JP. Self-cleaning and next generation anti-fog surfaces and coatings. Macromol Rapid Commun. 2008;29:455–66.CrossRefGoogle Scholar
  22. 22.
    Huang Q, Zhou G, Fang L, Hu L, Wang ZS. TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy Environ Sci. 2011;4:2145–51.CrossRefGoogle Scholar
  23. 23.
    IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. 2010;
  24. 24.
    Jalili P, Gueniche N, Lanceleur R, Burel A, Lavault MT, Sieg H, Böhmert L, Meyer T, Krause BC, Lampen A, Estrela-Lopis I. Investigation of the in vitro genotoxicity of two rutile TiO2 nanomaterials in human intestinal and hepatic cells and evaluation of their interference with toxicity assays. NanoImpact. 2018;11:69–81.CrossRefGoogle Scholar
  25. 25.
    Jani PU, McCarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm. 1994;105:157–68.CrossRefGoogle Scholar
  26. 26.
    Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen. 2008;49:399–405.CrossRefPubMedGoogle Scholar
  27. 27.
    Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V. An in vitro liver model-assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part FibreToxicol. 2012;9:28.Google Scholar
  28. 28.
    Kermanizadeh A, Gaiser BK, Ward MB, Stone V. Primary human hepatocytes versus hepatic cell line: assessing their suitability for in vitro nanotoxicology. Nanotoxicology. 2012;7:1255–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Kermanizadeh A, Roursgaard M, Messner S, Gunness P, Kelm JM, Møller P, Stone V, Loft S. Hepatic toxicology following single and multiple exposure of engineered nanomaterialsutilising a novel primary human 3D liver microtissue model. Part FibreToxicol. 2014;11:56.Google Scholar
  30. 30.
    Linnainmaa K, Kivipensas P, Vainio H. Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells. Toxicol Vitro. 1997;11:329–35.CrossRefGoogle Scholar
  31. 31.
    Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity: a review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8:233–78.CrossRefPubMedGoogle Scholar
  32. 32.
    McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): state of the science and knowledge gaps. NanoImpact. 2016;3:47–57.CrossRefPubMedGoogle Scholar
  33. 33.
    Palomäki J, Karisola P, Pylkkänen L, Savolainen K, Alenius H. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology. 2010;267:125–31.CrossRefPubMedGoogle Scholar
  34. 34.
    Petković J, Žegura B, Stevanović M, Drnovšek N, Uskoković D, Novak S, Filipič M. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011;5:341–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Preston RJ, Dean BJ, Galloway S, Holden H, McFee AF, Shelby M. Mammalian in vivo cytogenetic assays analysis of chromosome aberrations in bone marrow cells. Mutat Res Genet Toxicol. 1987;189:157–65.CrossRefGoogle Scholar
  36. 36.
    Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect. 2002;110:797–800.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sasaki YF, Kawaguchi S, Kamaya A, Ohshita M, Kabasawa K, Iwama K, Taniguchi K, Tsuda S. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res, Genet Toxicol Environ Mutagen. 2002;519:103–19.CrossRefGoogle Scholar
  38. 38.
    Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part FibreToxicol. 2013;10:15.Google Scholar
  39. 39.
    Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA, Krivtsova EK, Durnev AD. Investigation of genotoxic and cytotoxic effects of micro-and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res, Genet Toxicol Environ Mutagen. 2011;726:8–14.CrossRefGoogle Scholar
  40. 40.
    Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, Nesslany F. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol Vitro. 2014;28:60–9.CrossRefGoogle Scholar
  41. 41.
    Tavares MT, Santos AS, Santos IM, Silva MR, Bomio MR, Longo E, Paskocimas CA, Motta FV. TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surf Coat Technol. 2014;239:16–9.CrossRefGoogle Scholar
  42. 42.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Tice RR, Ivett JL. Cytogenetic analysis of bone marrow damage: toxicology of the blood and bone marrow. In: Irons RD, editor. Toxicology of the blood and bone marrow. New York: Raven Press; 1985. p. 119–40.Google Scholar
  44. 44.
    Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009;69:8784–9.CrossRefGoogle Scholar
  45. 45.
    Uboldi C, Urbán P, Gilliland D, Bajak E, Valsami-Jones E, Ponti J, Rossi F. Role of the crystalline form of titanium dioxide nanoparticles: rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol Vitro. 2016;31:137–45.CrossRefGoogle Scholar
  46. 46.
    Uchino T, Ikarashi Y, Nishimura T. Effects of coating materials and size of titanium dioxide particles on their cytotoxicity and penetration into the cellular membrane. J Toxicol Sci. 2011;36:95–100.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang JJ, Sanderson BJ, Wang H. Cyto-and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res, Genet Toxicol Environ Mutagen. 2007;628:99–106.CrossRefGoogle Scholar
  48. 48.
    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011;11:3026–33.CrossRefPubMedGoogle Scholar
  49. 49.
    Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007;171:99–110.CrossRefGoogle Scholar
  50. 50.
    Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wolf R, Matz H, Orion E, Lipozencic J. Sunscreens—the ultimate cosmetic. Acta Dermatovenerol Croat. 2003;11:158–62.PubMedGoogle Scholar
  52. 52.
    Zijno A, De Angelis I, De Berardis B, Andreoli C, Russo MT, Pietraforte D, Scorza G, Degan P, Ponti J, Rossi F, Barone F. Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicol Vitro. 2015;29:1503–12.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2019

Authors and Affiliations

  1. 1.Department of Botany, Center for Advance StudyUniversity of CalcuttaKolkataIndia

Personalised recommendations