Skip to main content
Log in

Adaptation and diversification of venomous snake proteins

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

According to the World Health Organization, approximately 1.8–2.7 million people worldwide suffer from venomous snake bites each year and at least 138,000 of these incidents are fatal. Whereas, snakebite envenoming poses a serious threat to public health, yet the snake venom toxins endow several pharmacological effects, including presynaptic neurotoxicity, myotoxicity, and cardiotoxicity, as well as anticoagulant, hemolytic, hemorrhagic, edema-inducing, and platelet aggregation-inhibiting effects. Duplication and mutation of the genes encoding these toxins play an important role in generating molecular diversity. Curiously, venomous snakes are not lethal to the viper itself because the viper’s resistance against its own venom. However, endogenous inhibitor proteins evolutionarily acquired by venomous snakes to protect themselves have not yet been fully characterised because it is unclear how to inhibit for target toxin due to the lack of information including mutation analysis and the three-dimensional structures of the inhibitors. This review provides an overview of endogenous inhibitors of venomous snake as regulation systems for the toxin proteins. Recently, we isolated some inhibitors targeting different toxins from the sera of the Japanese vipers. We investigated the evolution of these endogenous inhibitors, which have been significantly influenced by positive selection. Directional mutagenesis, where mutation hotspots are found in genes encoding molecular surface proteins and functional domains of these proteins, acts as a diversifying mechanism for the exquisite biological targeting necessary to protect the host from its own venom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aoki N, Deshimaru M, Kihara K, Terada S. Snake fetuin: isolation and structural analysis of new fetuin family proteins from the sera of venomous snakes. Toxicon. 2009;54(4):481–90. https://doi.org/10.1016/j.toxicon.2009.05.018.

    Article  CAS  PubMed  Google Scholar 

  2. Aoki N, Deshimaru M, Terada S. Active fragments of the antihemorrhagic protein HSF from serum of habu (Trimeresurus flavoviridis). Toxicon. 2007;49(5):653–62. https://doi.org/10.1016/j.toxicon.2006.11.001.

    Article  CAS  PubMed  Google Scholar 

  3. Aoki N, Matsuo H, Deshimaru M, Terada S. Accelerated evolution of small serum proteins (SSPs)—the PSP94 family proteins in a Japanese viper. Gene. 2008;426(1–2):7–14. https://doi.org/10.1016/j.gene.2008.08.021.

    Article  CAS  PubMed  Google Scholar 

  4. Aoki N, Sakiyama A, Deshimaru M, Terada S. Identification of novel serum proteins in a Japanese viper: homologs of mammalian PSP94. Biochem Biophys Res Commun. 2007;359(2):330–4. https://doi.org/10.1016/j.bbrc.2007.05.091.

    Article  CAS  PubMed  Google Scholar 

  5. Bastos VA, Gomes-Neto F, Perales J, Neves-Ferreira AG, Valente RH. Natural inhibitors of snake venom metalloendopeptidases: history and current challenges. Toxins. 2016. https://doi.org/10.3390/toxins8090250.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Campos PC, de Melo LA, Dias GLF, Fortes-Dias CL. Endogenous phospholipase A2 inhibitors in snakes: a brief overview. J Venom Anim Toxins Incl Trop Dis. 2016;22:37. https://doi.org/10.1186/s40409-016-0092-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chijiwa T, Hamai S, Tsubouchi S, Ogawa T, Deshimaru M, Oda-Ueda N, et al. Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2. J Mol Evol. 2003;57(5):546–54. https://doi.org/10.1007/s00239-003-2508-4.

    Article  CAS  PubMed  Google Scholar 

  8. Clark WC, Voris HK. Venom neutralization by rattlesnake serum albumin. Science (New York, NY). 1969;164(3886):1402–4.

    Article  CAS  Google Scholar 

  9. Domont GB, Perales J, Moussatché H. Natural anti-snake venom proteins. Toxicon. 1991;29(10):1183–94. https://doi.org/10.1016/0041-0101(91)90191-S.

    Article  CAS  PubMed  Google Scholar 

  10. Fontana F. Treatise on the venom of the viper; on the american poisons; and on the cherry laurel; and some other vegetable poisons. London: Forgotten Books; 1787.

    Google Scholar 

  11. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers. 2017;3:17079. https://doi.org/10.1038/nrdp.2017.79.

    Article  PubMed  Google Scholar 

  12. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLOS Med. 2008;5(11):e218. https://doi.org/10.1371/journal.pmed.0050218.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koh CY, Kini RM. From snake venom toxins to therapeutics—cardiovascular examples. Toxicon. 2012;59(4):497–506. https://doi.org/10.1016/j.toxicon.2011.03.017.

    Article  CAS  PubMed  Google Scholar 

  14. Koh CY, Modahl CM, Kulkarni N, Kini RM. Toxins are an excellent source of therapeutic agents against cardiovascular diseases. Semin Thromb Hemost. 2018;44(07):691–706. https://doi.org/10.1055/s-0038-1661384.

    Article  CAS  PubMed  Google Scholar 

  15. Reeks T, Lavergne V, Sunagar K, Jones A, Undheim E, Dunstan N, et al. Deep venomics of the Pseudonaja genus reveals inter- and intra-specific variation. J Proteom. 2016;133:20–32. https://doi.org/10.1016/j.jprot.2015.11.019.

    Article  CAS  Google Scholar 

  16. Shibata H, Chijiwa T, Oda-Ueda N, Nakamura H, Yamaguchi K, Hattori S, et al. The habu genome reveals accelerated evolution of venom protein genes. Sci Rep. 2018;8(1):11300. https://doi.org/10.1038/s41598-018-28749-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shioi N, Deshimaru M, Terada S. Structural analysis and characterization of new small serum proteins from the serum of a venomous snake (Gloydius blomhoffii). Biosci Biotechnol Biochem. 2014;78(3):410–9. https://doi.org/10.1080/09168451.2014.890030.

    Article  CAS  PubMed  Google Scholar 

  18. Shioi N, Nishijima A, Terada S. Flavorase, a novel non-haemorrhagic metalloproteinase in Protobothrops flavoviridis venom, is a target molecule of small serum protein-3. J Biochem. 2015;158(1):37–48. https://doi.org/10.1093/jb/mvv017.

    Article  CAS  PubMed  Google Scholar 

  19. Shioi N, Ogawa E, Mizukami Y, Abe S, Hayashi R, Terada S. Small serum protein-1 changes the susceptibility of an apoptosis-inducing metalloproteinase HV1 to a metalloproteinase inhibitor in habu snake (Trimeresurus flavoviridis). J Biochem. 2013;153(1):121–9. https://doi.org/10.1093/jb/mvs127.

    Article  CAS  PubMed  Google Scholar 

  20. Shioi N, Tadokoro T, Shioi S, Okabe Y, Matsubara H, Kita S, et al. Crystal structure of the complex between venom toxin and serum inhibitor from viperidae snake. J Biol Chem. 2018. https://doi.org/10.1074/jbc.ra118.006840.

    Article  PubMed  Google Scholar 

  21. Tan KY, Tan CH, Fung SY, Tan NH. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteom. 2015;120:105–25. https://doi.org/10.1016/j.jprot.2015.02.012.

    Article  CAS  Google Scholar 

  22. Tanaka Y, Oyama S, Hori S, Ushio K, Shioi N, Terada S, et al. Accelerated evolution of fetuin family proteins in Protobothrops flavoviridis (habu snake) serum and the discovery of an L1-like genomic element in the intronic sequence of a fetuin-encoding gene. Biosci Biotechnol Biochem. 2013;77(3):582–90. https://doi.org/10.1271/bbb.120829.

    Article  CAS  PubMed  Google Scholar 

  23. Valente RH, Dragulev B, Perales J, Fox JW, Domont GB. BJ46a, a snake venom metalloproteinase inhibitor Isolation, characterization, cloning and insights into its mechanism of action. Eur J Biochem. 2001;268(10):3042–52.

    Article  CAS  PubMed  Google Scholar 

  24. Waheed H, Moin SF, Choudhary MI. Snake venom: from deadly toxins to life-saving therapeutics. Curr Med Chem. 2017;24(17):1874–91. https://doi.org/10.2174/0929867324666170605091546.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi K, Chijiwa T, Yamamura T, Ikeda N, Yatsui T, Hayama S, et al. Interisland variegation of venom [Lys(49)]phospholipase A2 isozyme genes in Protobothrops genus snakes in the southwestern islands of Japan. Toxicon. 2015;107(Pt B):210–6. https://doi.org/10.1016/j.toxicon.2015.08.024.

    Article  CAS  PubMed  Google Scholar 

  26. Yamaguchi Y, Shimohigashi Y, Chijiwa T, Nakai M, Ogawa T, Hattori S, et al. Characterization, amino acid sequence and evolution of edema-inducing, basic phospholipase A2 from Trimeresurus flavoviridis venom. Toxicon. 2001;39(7):1069–76.

    Article  CAS  PubMed  Google Scholar 

  27. Yamakawa Y, Omori-Satoh T. Primary structure of the antihemorrhagic factor in serum of the Japanese Habu: a snake venom metalloproteinase inhibitor with a double-headed cystatin domain. J Biochem. 1992;112(5):583–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by KAKENHI of Japan Society for the Promotion of Science (Nos. 16K18880 and 17KK0179) and the Naito Foundation of Japan (160605), and the Central Research Institute and the female researcher support programmed of Fukuoka University. We thank Japan Society for the Promotion of Science (JSPS), the Naito Foundation and Fukuoka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narumi Aoki-Shioi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki-Shioi, N. Adaptation and diversification of venomous snake proteins. Nucleus 62, 165–172 (2019). https://doi.org/10.1007/s13237-019-00270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00270-7

Keywords

Navigation